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:Abstract

In this paper, we discuss various generalizations of geometrical theorems of cyclic
quadrilateral and trapezoid into real normed spaces. Current proofs are introduced, and
some new characterizations of inner product spaces are obtained with some applications.
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1- Introduction:

In the Euclidean geometry, a quadrilateral inscribed in a circle and trapezoid theorems,
found greatest interest by the researchers in classic spaces, so through them we will study
some theorems to characterize the inner product spaces, based on the norm derivatives.
First, we deal with Ptolemy's theorem, which states: "If a quadrilateral is inscribed in a
circle then the product of the measures of its diagonals is equal to the sum of the products

of the measures of the pairs of opposite sides". D
L
(Consider A, B, C, and D in areal plane see Fig. (1
A B
_ _ _ _ _ _ 1 ' |-
AC « BD = AB « DC + AD « BC ' (1)
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There are many known proofs to Ptolemy's Theorem based on classic spaces, in
particular, using some trigonometric proof [1], [2] and [11 ], using similarities of triangle
[11], using complex numbers [11], metric relation of circumcenter [3] and [4],using
isomorphic triangle [5],[11],using trigonometric, circle geometry, and transformation
geometry [6].

On the other side, we deal with a trapezoid theorem, which states: "the sum of
squares of diagonals is equal to the sum of squares of non- parallel sides and the sum of
twice the product of parallel sides". . .

We can write this theorem as follows:
i

B
CraLrs
2L

AC +BD =4D +BC +2AB+DC 0 @)

The problem of finding necessary and sufficient georﬁétrical conditions for a normed

space to be inner product space it is still an open one. So, this theorem and others which

associated with trapezoid sides measurements have been examined by many studies with
different proofs see [10], [11], [12], [13].

Then by studying of these articles, that concern with cyclic quadrilateral, and
trapezoid, and through the investigation in this area, the researcher revealed a gap in this
field, which increased the researcher's motivations of high demand for a study and
prompted him to conduct a research. The researcher adopted analytical descriptive
approach through all theorems.  Therefore, this paper aims to study various
generalizations of geometrical theorems of cyclic quadrilateral and trapezoid into real
normed spaces to investigate new characterizations of inner product spaces. Therefore,
this paper tries to answer the following two questions:

1. What are the various generalizations of geometrical theorems in Euclidean plane of
cyclic quadrilateral and trapezoid into real normed spaces?

ii. How new characterizations of inner product space can be investigated via
generalizations of geometrical theorems of cyclic quadrilateral and trapezoid into
real normed spaces?

Euclidean ' real normed ‘ norm ' characterizing
plane space derivatives of LLP.S

igure 3

This study is unique one compared to the previous studies because it addresses some

Euclidean geometrical theorems, and finds generalizations appropriate to them, into real
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normed spaces to establish some diagnoses of inner product space based on the norm
derivative mapping.

2- Preliminaries

Definition 2.1: a real vector space X is called an inner product space if there is a real
valued function (-, *) on XXX that satisfies the following four properties for all x, y, z, in X
and  a€R:

1. (x, x) is nonnegative and (x, x) = 0 ifand only if x = 0.
. (x,y + z) = (x, y) + (x, z).

. (x,ay) = a{x,y).

v. (x,y) = (¥, %)

An inner product (-, -) defined on XXX induces the norm, so, all inner product

<

spaces are normed linear spaces when the norm is induced by inner product, one says that
the norm derives from an inner product.

Definition 2.2: In order to translate (formulate) these theorems into a real normed space,
we will consider the two mappings p'+:X XX—R defined by:

' 2 2
pi(x, y) = Jx—HXEt—_M”— X YEX.

Proposition 2.3:

If (X, (... ) is a real inner product space then, both, p’+, p'_coincide with (... ).

i 2 2
3 — Alxt+tyll —lx
Proof: pi(x, y) = ” .
. x4ty x+ty)—(x,x
= i XHyxtty)—(ox)
+ 2t
t—0"
2 2 2 2
— x|l +2txxy)+t Iyl —llxll
= lim .
+ 2t
t—0
t(20c)+elyll”)
= lim 2 )
+ 2t
t—0
= (%, ¥).

The mappings p'+ play a crucial role in this paper, so we give several propositions of

these functions, which we used for different characterizations of inner product spaces.
Indeed when the norm derives from an inner product space (E, ..))then
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p'+(x, y) = (x,y).We quote here some elementary properties concerning the functions p’+

as follows: see [8+9].

L p,(6y) = lIxll’, and [0, Go )| < IIxll « Iyl

2. p;(ax, y)= p;(x, ay) = ap;(x, ), X, yEX, a € R, x=0;
3. p'i(x, ax + y)= on||x||2 + p'i(x, y),x,VEX,a € R;

4. p_(%y) < p, (%), % YEX;

. p;(x, y)= p;(y, 2. p_(%,) = p_(x,¥), %, YEX;

If any of the following two conditions is verified, then the norm in X derives from an
inner product space i.e. X is an inner product space

1. p'+(x, y) = p’+(y, x), For all x, y in X.

2. p;(u, V) = p;(v, u), For all u, v unit vectors in X.

3- Discussions:

In this section, we present some new characterizations of inner product spaces.
Now let us consider a property of cyclic quadrilateral ABCD in the real plane, E, F, G,
be three points on the lengths AB, AC, AD, consequently, such that AEFG be a
parallelogram, then  see fig (4),

C
. . . A B
AF « AC = AE « AB + AG » AD ~— (3)
Figure 4

In order to translate equation (3) into a real normed space, we consider x, y, z, and W in
X forall A, B, « < 1, then equation (3) becomes:

L2 52 52
AMiwll = Bllxll + allyll (4)
Proposition 3.1: let (X, || * ||) be a real norrned space. Then X is an inner product space

- o o

if, and only if for all vectors x, y, z, and W in X, and for all A, 3, a < 1, equation (4)
holds.

- 2 - -

Proof: Alw|| = A{w, w)
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= w,w)
= (Bx+ ayw)
= Bx+ ay,x + z)

- 2 - - - - - -
= Bllxll + Bx 2z) + {(ay,x) + (ay, z)

- 2 - > - -
= Blxll + Aw,2) + (ay,x)

- 2 - > - > -
= Bllxll + (Aw,z) + (ay,y — BD)

- 2 - - - 2 - -
= Bllxll + Aw,2) +alyll — {(ay,BD)

- 2 - 2 - > - -
= Blxll + ollyll + (Aw,z) — (ay, BD)

But, AAFG ~ ABDC , then A 4
BD BC
IAw|| « [[z]| = llcyll = [[BD]|
waz) _ {.D5) ,but coscos® = coscos
coscos 0 coscos ¢

(Aw, z) = (ay, BD)
(\w, 2 — (ay, BD) = 0.
Hence, the proposition is proved, and then X is an inner product space.

Ptolemy's Theorem in the Real Normed Space:
In order to translate equation (1) moving from the classic space into a real normed

- 5 -5 -
o

space, we consider the vectors: x, y, z, and w, such that:

[

AF = Aw, AER.

> .
Figura 5
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AE = Bx, B ER.
AG = ay, o € R, see fig(5),
Then, equation (1) becomes as follows:

Iwll o lly = xIl = [lxll « [lw =yl + llyll « [[w— x| (5)

Theorem3.2: let (X, || » ||) be a real normed space. Then X is an inner product space if,

and only if for all vectors x, y, z, w in X, and for all A, B, a < 1, equation (5) holds.

Proof. From proposition 3.1, we have

L2 L2 )
Aiwll = Bllxll + oyl
Iwll e lIAwll = x|l « IBxIl + NIyl * oyl ..covvennn. (M
Since, AAFG ~ ABDC , then
AF _ FG _ AG
BD  DC  BC
Pwl _ _lBx _ _flayll
ly—=xll  lw=yll Il w—xl|
=l _ Aw—yll _ llw—x] )
IAwll 18 I llacyl
Multiply (I) by (I1), we get:
il o wll » 2= = izl o g ) o ”W‘y” Iyl e flayll L=t
IAwll 1B xI llayl

Hence, the theorem is proved, and X is an inner product space.

On Sides and Diagonals of Trapezoid in an Inner Product Space:

In addition, let ABCD be a trapezmd considering vectors x, y, w, for A>0 and. x #*
y as in fig (6), we have: AC = W,
BD =y — x, ocER*.
Then equation (2) into an inner product space becomes as follows:
- 2 - - 2 - 2 - - 2 - - -
Iwll +lly = Il =1yl + lw—= x| + 2ix[[llw — yl| (6)
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Theorem3.3: let (X, || * ||) be a real normed space. Then X is an inner product space if,

and only if for all vectors x, y, w, such that, a« > 0, equation (6) holds.

Proof. By using cosine formula, and from fig. (6) We get:
- 2 - 2 > > 2

wll = llxll + [lw— x|l = 2|  |lw — x|l coscosB (7)
- - 2 - 2 - 2 - -
ly = xll = 1llxll + 1yl = 2|lx|l * llyll cos cos A
8)
Then, by adding these two equations (7), (8), we have the following:
- 2 - - 2
iwll + llx = ¥l
- 2 - - 2 - 2 - - - - -
=yl + llw—= x|l + 2[[x|| — 2|[x|| « |[[w — x|lcoscos B — 2||x|| * [|lyl| coscos A
- 2 - - 2 - - - - -
=yl + lw—= x| +2 IIXII(IIxII — llw = x[[coscos B — |lyl| CoscosA)- )
However, from fig. (6), we get:
lw — y|| = ||x|]]| = [lw— x]||coscos B — ||y|| cos cos A (10)

By substituting (10) in (9), hence the proof is followed, and X is an inner product space.
Isosceles trapezoid: Moreover, using the isosceles property for the trapezoid we have:

x = w 37) a>0
> o 2 > o 2 2 2
Y +ZIl + 11X + Yl = 11X + IIZII + 2]l -
Iyl = 1w — .
Then by substituting in equation (6) we get'

- 2 5 2

- -

1=+ vl + 1y =« = 2||y|| + —”f”— Which implies to the following:

of - 2 ) S 2
ol (IIXII - 2<x,y))+ 20(((?6,}') — [l )+ lx|l =

Which is a quadratic equation, and by using the general formula, we get the following

solutions: see [12]
Case (1): a =1, which means that the trapezoid can be inscribed in a circle and becomes a

rectangle which attains parallelogram equality as follows:
> 5 2 > 5 2 > 2 > 2
lx + ¥l +llx =yl = 2[xll + 2]yl
I|x|I

il —Z(xY)

Case (2): a0 = , now, we substitute the value of a in equation (6) as follows:
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e - 2 - - 2 - 2 - i
1=+l + 1y —xll =2yl + 2]l L
S 52 N 2 L2 52 RN
x| lx]l —=2¢x,y) N S50 5 2 - 2 20 x| (IIXII —2<x,y))
||J—lﬂ —— 4yl +ly—xl =2yl + —
[ [l x|l

- - 2 - - - 2 —)2 - 4 - - 2
IIx(IIXII - Z(x'Y))+|IXII eyl +llxll olly —xll =

- 4 - 2 - 6 - 455
= 2llx|l <yl +2lxll — 4l x|l (x,y).
S L2 , L2 L7 L4 L L2
IIX(IIxII - 20+(x,y))+|IXII eyl x|l ollx—yll =
L4 L2 L6 S o4,
= 2llx|l iyl + 2lxI —4llx]l p,(x,¥) (11)

Theorem3.4: Let (X, || » ||) be a real normed space. Then X is an inner product space if,

and only if for all vectors x, y, w in X, equation (11) holds.

Proof. Substitute x by tx with t > 0 in equation (11), we get:

2

2 - - -
ey —2xp oIl +1lxl

4 2 4 2

1112 1l Myl = 2lixll <yl -

- - - - - -
Then by using u instead of x and v instead of y, where uand v are unit vectors, then this
2

equality becomes: ||17— 21:p'+(u, | = 1,
Then we have: 4p'+(u, v)2 - 4p'+(u, v)-p;r(v, u)=20
P, (W), (w )~ p, (v, w) = 0,
Then we conclude that,
p'+(u, v) = 0, or p;(u, v) = p;(v, u)

Since this equality hold for u, ve Sx, then X is an inner product space by condition (2).
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On Trapezoid Based on a Triangle in an Inner Product Space:
Now agaln we will translate equatlon (2) into an inner product space considering

- - -

vectors x, y, ax, ocy, for a > 0 and x * y as in fig (7), so we have R

- - - N o

BD = ay —x, a > 1.

Then we translate equation (2) as follows: see [11]

5 52 S 2 ) S 2 S 52
ly — ax|| + [lay = x|| = [lax = x| + [lay =yl + 2afly — x|| .
5 5 2 ) of -2 52 S 52
ly — ox|| + [fay — x| = (¢ = 1) (IIXII + Il )+ 2a|ly — x| . (12)

Theorem 3.5: let (X, || ¢ ||) be a real normed space. Then X is an inner product space if,

and only if for all vectors x, y, ax, ay , and for all, a > 1, equation (12) holds.

Proof.
5 52 , 2 52 N
ly = ax|| =o' lx]| + Iyl = 2a(y,x)
S 52 Ny 42 N
loy — x| =allyll + lIx]| — 2Za(y, x)
R 42 S 52 ) =2 52 RN Ry 52 N S 52 R
ly — ax|| + llay — x|l =a x|l + Iyl = 2afy,x) + |yl + x| — 2a(y,x) = 2a|ly — x| + 2ally

i 2 - 2 2 - 2 - 2 - > - 2 - 2 - > - - 2
= o lxll + flxll + oyl + 1yl — 4y, x) — 2allyll — 2aflx|| + 4oy, x) + 2ally — x|
> 2 > 2 > 2 > 2 > 2 > 2 5> o 2

2 2
allxll = 2aflxll + [lxll + oyl = 2aflyll + 1yl + 2ally — x]| .

2 2 2
2 - 2 d d -
= (o« = 20 + 1)lIx]| + (o = 2a + 1)llyll + 2ally — ]| .
2 - 2 - 2 - - 2
= (o = 2a + 1)(||x|| + [yl )+ 2ally — x|l .

Reciprocally, assuming the hypothesis for unitary vectors u and v instead of x and y, i.e.:
U, v in SE, we have that for all u, v in SE and o > O:
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- - 2 - 2 > 52 - 2
lv—aull —[lull [lov—ull —|lull
+
2a 20
o 52 L2 52 L2
(a=21)"Hlull +lvll - o2 [lull +IvIl
_ + 2olv—uf|
- 2a 2a 20
. . (||u|| +{v| )(a —2a) )
P, (0, + p, (1, v) = A+ [[v — ]
L2 L2
(llull +lvl| )(0(—2) S 52
= 11m+ > + |[v — u|
a—0

. S 52 52 52
2p,(wv)=llv—ull - (IIuII + vl )

- - 2
' — Av—ull =2
p_l_(u’ 'U) - 2

The symmetry of p+f0r unitary vectors hold, and this is sufficient condition to

characterize X as an inner product space.

The Height's Measurement of Trapezoid in an Inner Product Space:

If X is an inner product space (I.P.S) and x and y are two independent vectors in
X — {0}, in the trapezoid of vertics A4, B, C and D, the length ofnthe height (h) over AB is

—-_."c

given by: \\
v

Figure &

h= ﬁd(x—ﬁ)(s—zﬁ)(s—v?—?c)(s —DC - 4D) (13)

AB+BC+DC+AD

> , then equation (13) can be

Where S is the semi perimeter, S =

translated as follows:

= WT"]_";”'V(S ~ llzll)(S = xID(S = lizll = Iwll)(s = lizll = v
(14)

Several new characterizations of inner product space have been obtained when dealing
with special properties of the functionh(x, y), see [13], [14].

10
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In the case of isosceles trapezoid, we have:

Iyl = llwll,
- 2 ' -
- - Iyl —p, (a)e(y—x)
lzll = lly — x|l = 2]l _— I,
lly—xIl
- 2 " -
- - - Iyl =p, 32)e(y—2)
S=1lly —xll + Iyl =1l E— Il
[ly—xll
So, equation (14) translated as follows:
20
- Iyl —p (vx)e(y—x
h(ey)="\/ Iyl =l Y | (15)

[ly=xll
Theorem 3.6: : Let (X, || » ||) be a real normed space with dim X>2 ,then X is an inner

product space if, and only if, equation (15) holds, for all independent vectors x, y, in X.

Proof:

o 51 =0, Gey)e(x=)

Cosider the function h(x,y) =y , see [14], defined for all ;,

> 52

lx=yli
VEX-X, x # y, ||h(x, y)|| gives the usual height over AB. Substitute y = tz,t > 0, in the
definition of h(x, y), then divide both sides by t and take t—0, as follows:

ezl *—p  (xtz)e(x—tz
el o SO

t
[lx—tz]|

tllzll’=p (x2)e(x—tz)
Il(z + . [

I 2

llx—tz||
, L(x2)e
da ) (16)
[l
On the other hand by (15):

oo (eim)e(x-t)
||h(x,tZ)|| _ 2 tz —p_ xX,tz)e| x—tz
— ="\/lezll” =l — I/t
llx—tz]
lellp_(oae(itz)
2 tlz|l"—p_(x,z)s(x—tz
=/ llzll” =l — [
llx—tz]] «

11
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h(x,t 2 p_(x2)°
l%ﬁL=\ﬂM|— —. (17)

-
|Bd]

Then from (16), and (17) ,we get the following equality:

p, (x2)e(x) 2 (D)
lz — ——I =\/IIZII - —
I I

By squaring both sides we get:

: 2 L
b, (x2)+(%) 2 p(x2)
lz —————II =zl ———
[l [l
I = o () sl = sl e () (18)
llzIl S TR |Bel 1z Pl Wz )
Letu = ﬁ, and v = “—;I, such that u, v are two unit vectors in X, then equation(18)
be as follows:
. 2 : )
lv —p wv)ull =1-p_(wv), (19)
Substitute v by ||ZJ4:Z|| , we obtain:
: 2 . 2
u+v u+v _ _ u+v
e~ p+(”’ kol ) ul =1 p—(“' ||u+v||) '
' 2 2 2
lu +v — p+(u,u +v)ull =llu+v] —p (wu+ v)
' 2 2 2
lv + u(1 — p+(u,u + V)| =llu+v| —p (wu+ v)
: 2 5 . 2
lv+u@ =1-p vl =llu+vl —1+p_(wv)
: 2 ) . ) :
lv—p, wvull =lu+v| -1-p (Wv) - 2p_(wv)

! 2 ! 2 2 ! 2 !
140, o)’ — 20, wv) = llu+ vl — 1 —p_(w)’ ~ 2p_(wv)
! 2 2 ! 2 !
I-p@v)y =utvl -1-p (wv) —2p_(wv)
T=fu+v)"—1-2p ()

2+ 2p (wv)=fu+ v’

12



Cliaadill 3aaxie ALY 241 5 SN Alad))
f_- YoYN(9) el oDl g il aaal

Shsayasall 530ats alelidl Ak g ASTY Alell

2+ 2p, () = |lv + ul’
2 + 2p'_(u, v)= 2+ Zp'_(v, u)

b (wv)=p (v,u).

4 — Applications of Ptolemy's theorem: Here, we have some applications of Ptolemy's
theorem on real normed spaces through some mathematical identities.

From equation (5), and when a cyclic quadrilateral being a trapezoid, this leads to the
following corollary:
Corollary 4.1: Let (X, || » ||) be a real normed space with dim, X>2 then X is an inner

- o5 5

product space if, and only if, for all independent vectors x, y,w in X such that the
following equation holds:

- - 2 ' - - 2 - -
llx (lell = 2p, (%, JI)) t+yellxlf I o lly —xll =

52 52 , N 2
= [ x|l (IIXII - Zp+(x,y))+ yllx (IIXII - 29 (%, Y))+ IIXII - 3I| (20)

First application:

Suppose that a circle contain point A of parallelogram APQR and intersects side

AP, AR and diagonals E , DB in points B, D and C respectively,
R

See fig. (9). so, we have the following property: see [7]

AC «AQ =AB » AP + AD + AR (20)

- o -5

We consider the vectors x, y,w, Bx ay, 7\W for all A, B, a € R then equation (20)
becomes:

Iwll o IAwll = [lx|l « IBx[l + llyll * [l ayll
Which can be written as:

42 42 )
AMiwll = Bllxll + «ollyl (21)

13
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Corollary 4.2: let (X, || » ||) be a real normed space. Then || e || is derived from an inner

product space if, and only if for all vectors x, y, z, w in X, and for all, A 3, a > 1,
equation (21) holds.

Proof: From Ptolemy's theorem, we have:

- - - - - - - - -
Iwll o lly = xIl = llxll « ly = wll + Iyl « l|w— x|l
Since, ABCD ~ AAQP , then 25 - p _ BC
AQ AP PQ
=l _ ly-wl  _ Jlw=x]|
A wl 1 llayll
From the two steps, we have:
- >y =l - >0 ly=wl - o lw=]
Iwll o IAw|l o === = |ix|| « IBx|l * ==+ |yl * llayll «——=
Awll 1B | llayll
42 .2 L2
AMiwll = Blixll + allyll

Hence, the corollary is proved.

Second Application:

a square ABCD is inscribed a circle and P is a point on the arc BC of the circle, then we
have the following property:

Figure i

PA+PC __ PD 22)

> o

It can be translated into a real normed space by considering x , y as vectors as follows:

2yl +iyll _ _llaty]

lctyll+letyll - fl2x+y]

2;+_) + )| J_c)+_)

Lyl eyl (23)
2[Jx+y] 122+

14
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Corollary 4.3: let (X, || » ||) be a real normed space. Then || ¢ || is derived from an inner

product space if, and only if for all vectors x, y in X, equation (23) holds.

Proof: from the cyclic quadrilateral ABCP and by using Ptolemy's theorem we get
12x[[ « flx + Il = [lxll « llyll + llxIl || 2x + yl|

Again, from ABPD we have:

12x]l  l12x + Il = x|l  [lx + ¥l + llx[[ « || x + ¥l
Then by divide the first equation by the second one, we get

12xllx+yll  _ _ llxllelylli+xliell 2x+yli
[12x]|+]12x+y |l llxlle 1l 2yl +llxll o1 X+l
Which implies that:
eyl _l2x+yll+]y]l
l12x+yll 2||lx+yll

Third Application (Golden Ratio):

Let ABCDE be a regular pentagon in a circle, then the golden ratio r is given by:

d diagonal 1++/15

'r' = — - = .
a side 2

A

Which can be written in the normed space as:

iyl _ 115 Figure 11 (24)
I 2
Corollary 4.4: let (X, || * ||) be a real normed space. Then || ¢ || is derived from an inner

product space if, and only if for all vectors x, y in X, equation (24) holds.

Proof: by using Ptolemy's theorem in the shapeABCD, we have

fw +yll o llx+yll = llxll o [Iwll + [yl <l z+ 7]
From regularity, we have:
Ix +yll = llz+rll =[w+yl
Ixll = llwll = Iyl
- - 2 - 2 - - -
Then we have: lx + x|l =llxIl + llx|| * || x + yl|
5 5 \2 RN
(||x+y||) el g —
(4] (4]

By solving this quadratic equation, we have the following solution,

15
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lxtyll _ 1+/15
Il 2

Which is golden ratio.
Fourth Application.

Ptolemy's theorem also provides some trigonometric identities; here we prove the
addition and the subtraction formula for sine and cosine rule.

Addition Formula: Let ABCD be a cyclic quadrilateral such that the side AC serve as a
diameter and AC = 1, then from the fig. (12) We have:

5
Iwll = 1.
- /4
— = sin si A
[lw — y|| = sinsin o J .
-
llyl| = coscosa.

B
- - . i .C.'glll-'ﬁ 12
w—x = sinsin 3.

||;|| = coscos .
In addition, from AADB, we have: Sins”;:é !-[3) = Sinsirjlgo_a) :
Which implies that: sin sin (« + B) = [x — y||
Then by substituting in the following Ptolemy's theorem:
Wl o llx =yl = Il + llw =yl + Iyl « lw = x|
We get: sinsin (a + ) = sinsina-coscosf3 + coscos a sinsin 3

Which called the addition formula of sine.
Subtraction Formula: Let ABCD be a cyclic quadrilateral such that the side BC serve as

a diameter and BC = 1, then from the fig. (13) We have:

- - A ?
lw—x| = 1.
- C
|lw|| = sinsina. 4 '

||X|| = coscos a. Figure 13
- -
[[w—y| = sinsinf3.
- -
[lx — y|| = coscosp.
And from AADB, we have:
Wl 1l
sinsin (a—=B) ~ sinsin (90—B) °

16
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Which implies that: sinsin (a« — B) = ||y||
Then by substituting in the following Ptolemy's theorem:
Iwll s llx = yll = llxIl « lw =yl + [yl * llw - x|

We get:
sinsin (¢ — ) = sinsina-coscosf3 — coscos o sinsinf3.

Which called the subtraction formula of sine.

Cosine rule: let ABC be any arbitrary triangle. Then we have the following relation:

a’ =b>+ ¢’ — 2bccosA (25)
Proof: Let ABCD be an isosceles trapezoid such that, then see fig.(14)
Iyl = llw — x|

ACll = wll = llx = ¥l

ly = w|| = ||x|| = 2|lw — x|| coscos (61+ 92) Figure 14
Then from Ptolemy's theorem, we have:

- - - - - - - - -
Iwll o llx =yl = llxll « [lw—=yll + [yl « lw— x|

= ll<l(lixll = 2w — xilcos cos (8, +6,) )+ Iyil « Ilw = x|

- 2 - 2 - - 2 - - -
wll = llxll + lw = x|l — 2[wllllw — x|l cos cos (6, +6,).

(26)
Which we called formula of cosine in the real normed space.
Corollary 4.5: let ABC be Congruent triangle such that A, B. C, and Q on a circle, then

AQ = QB + QC, e @)
Which translated as: ||w|| = |[w — x| + |[w — || (28)
Proof: Then from Ptolemy's theorem, we have: A
- — - - - - - - £
Iwll s llx = vl = llxll * llw =yl + llyll « lw— x|
Figure 15

17
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But: [[yll = |lx — yll = lx|l
wiiell=yll _  lixlielw=yll _ liyllellw—x]
=] I Iy
Iwll = llw — x|l + llw— yll

Hence, the corollary proved.
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