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Abstract:

In this paper, we discuss various generalizations of geometrical theorems of cyclic
quadrilateral and trapezoid into real normed spaces. Current proofs are introduced, and
some new characterizations of inner product spaces are obtained with some applications.
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مشتقة النظیم، ھندسة اقلیدس.

1- Introduction:

In the Euclidean geometry, a quadrilateral inscribed in a circle and trapezoid theorems,
found greatest interest by the researchers in classic spaces, so through them we will study
some theorems to characterize the inner product spaces, based on the norm derivatives.
First, we deal with Ptolemy's theorem, which states: "If a quadrilateral is inscribed in a
circle then the product of the measures of its diagonals is equal to the sum of the products
of the measures of the pairs of opposite sides".

Consider A, B, C, and D in areal plane see Fig. (1(

(1)𝐴𝐶 • 𝐵𝐷 = 𝐴𝐵 • 𝐷𝐶 +  𝐴𝐷 • 𝐵𝐶
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There are many known proofs to Ptolemy's Theorem based on classic spaces, in
particular, using some trigonometric proof [1], [2] and [11 ], using similarities of triangle
[11], using complex numbers [11], metric relation of circumcenter [3] and [4],using
isomorphic triangle [5],[11],using trigonometric, circle geometry, and transformation
geometry [6].

On the other side, we deal with a trapezoid theorem, which states: "the sum of
squares of diagonals is equal to the sum of squares of non- parallel sides and the sum of
twice the product of parallel sides".

We can write this theorem as follows:

(2)𝐴𝐶
2

+ 𝐵𝐷
2

= 𝐴𝐷
2

+ 𝐵𝐶
2

+ 2 𝐴𝐵 • 𝐷𝐶

The problem of finding necessary and sufficient geometrical conditions for a normed
space to be inner product space it is still an open one. So, this theorem and others which
associated with trapezoid sides measurements have been examined by many studies with
different proofs see [10], [11], [12], [13].

Then by studying of these articles, that concern with cyclic quadrilateral, and
trapezoid, and through the investigation in this area, the researcher revealed a gap in this
field, which increased the researcher's motivations of high demand for a study and
prompted him to conduct a research. The researcher adopted analytical descriptive
approach through all theorems. Therefore, this paper aims to study various
generalizations of geometrical theorems of cyclic quadrilateral and trapezoid into real
normed spaces to investigate new characterizations of inner product spaces. Therefore,
this paper tries to answer the following two questions:

i. What are the various generalizations of geometrical theorems in Euclidean plane of
cyclic quadrilateral and trapezoid into real normed spaces?

ii. How new characterizations of inner product space can be investigated via
generalizations of geometrical theorems of cyclic quadrilateral and trapezoid into
real normed spaces?

This study is unique one compared to the previous studies because it addresses some
Euclidean geometrical theorems, and finds generalizations appropriate to them, into real
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normed spaces to establish some diagnoses of inner product space based on the norm
derivative mapping.

2- Preliminaries

Definition 2.1: a real vector space is called an inner product space if there is a real𝑋
valued function on that satisfies the following four properties for all in〈∙, ∙〉 𝑋×𝑋 𝑥, 𝑦, 𝑧, 𝑋
and :α∈𝑅

i. is nonnegative and if and only if .〈𝑥, 𝑥〉 〈𝑥, 𝑥〉 = 0 𝑥 = 0
ii. 〈𝑥, 𝑦 + 𝑧〉 = 〈𝑥,  𝑦〉 + 〈𝑥, 𝑧〉.

iii. 〈𝑥, α𝑦〉 =  α〈𝑥, 𝑦〉.
iv. 〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉.

An inner product defined on induces the norm, so, all inner product〈∙, ∙〉 𝑋×𝑋
spaces are normed linear spaces when the norm is induced by inner product, one says that
the norm derives from an inner product.

Definition 2.2: In order to translate (formulate) these theorems into a real normed space,

we will consider the two mappings : defined by:ρ
±
' 𝑋×𝑋→𝑅

.ρ
±
' 𝑥, 𝑦( ) = ‖𝑥+𝑡𝑦‖2−‖𝑥‖2

2𝑡  . 𝑥. 𝑦∈𝑋

Proposition 2.3:

If is a real inner product space then, both, , coincide with𝑋, 〈.,. 〉( ) ρ
+
'  ρ

−
' 〈.,. 〉.

Proof: .ρ
±
' 𝑥, 𝑦( ) = ‖𝑥+𝑡𝑦‖2−‖𝑥‖2

2𝑡  

. =  
𝑡⟶0±
lim 〈𝑥+𝑡𝑦,𝑥+𝑡𝑦〉−〈𝑥,𝑥〉

2𝑡

. =
𝑡⟶0±
lim ‖𝑥‖2+2𝑡〈𝑥,𝑦〉+𝑡2‖𝑦‖2−‖𝑥‖2

2𝑡

. =
𝑡⟶0±
lim 𝑡 2〈𝑥,𝑦〉+𝑡‖𝑦‖2( )

2𝑡

= 〈𝑥, 𝑦〉.

The mappings play a crucial role in this paper, so we give several propositions ofρ
±
'

these functions, which we used for different characterizations of inner product spaces.
Indeed when the norm derives from an inner product space then𝐸, 〈.,. 〉( )
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.We quote here some elementary properties concerning the functionsρ
±
' 𝑥, 𝑦( ) =  〈𝑥, 𝑦〉 ρ

±
'

as follows: see [8+9].

1. , andρ
±
' 𝑥, 𝑦( ) = ‖𝑥‖2 ρ

±
' 𝑥, 𝑦( )|||

||| ≤ ‖𝑥‖ • ‖𝑦‖;

2. , ,ρ
±
' α𝑥, 𝑦( ) = ρ

±
' 𝑥, α𝑦( ) = αρ

±
' 𝑥, 𝑦( ) 𝑥, 𝑦∈𝑋  α ∈ 𝑅, 𝑥≥0;

3. , ;ρ
±
' 𝑥, α𝑥 + 𝑦( ) = α‖𝑥‖2 + ρ

±
' 𝑥, 𝑦( ), 𝑥, 𝑦∈𝑋  α ∈ 𝑅

4. ρ
−
' 𝑥, 𝑦( ) ≤ ρ

+
' 𝑥, 𝑦( ), 𝑥, 𝑦∈𝑋;

5. ,ρ
+
' 𝑥, 𝑦( ) = ρ

+
' 𝑦, 𝑥( ) ρ

−
' 𝑥, 𝑦( ) = ρ

−
' 𝑥, 𝑦( ), 𝑥, 𝑦∈𝑋;

If any of the following two conditions is verified, then the norm in derives from an𝑋
inner product space i.e. is an inner product space𝑋

1. For all in .ρ
+
' 𝑥, 𝑦( ) = ρ

+
' 𝑦, 𝑥( ), 𝑥, 𝑦 𝑋

2. For all unit vectors in .ρ
+
' 𝑢, 𝑣( ) = ρ

+
' 𝑣, 𝑢( ), 𝑢, 𝑣 𝑋

3- Discussions:
In this section, we present some new characterizations of inner product spaces.

Now let us consider a property of cyclic quadrilateral in the real plane, , ,𝐴𝐵𝐶𝐷 𝐸 𝐹,  𝐺
be three points on the lengths , consequently, such that be a𝐴𝐵,  𝐴𝐶,  𝐴𝐷 𝐴𝐸𝐹𝐺
parallelogram, then       see fig (4),

(3)𝐴𝐹 • 𝐴𝐶 = 𝐴𝐸 • 𝐴𝐵 +  𝐴𝐺 • 𝐴𝐷

In order to translate equation (3) into a real normed space, we consider , and in𝑥
→

, 𝑦
→

𝑧
→

, 𝑤
→

for all , then equation (3) becomes:𝑋 λ,  β,  α < 1

 λ ‖𝑤
→

‖
2

=  β‖𝑥
→

‖
2

+ α‖𝑦
→

‖
2

(4)
Proposition 3.1: let be a real normed space. Then X is an inner product space𝑋, ‖ • ‖( )

if, and only if for all vectors , and in , and for all , equation𝑥
→

, 𝑦
→

𝑧
→

, 𝑤
→

 𝑋 λ,  β,  α < 1 (4)
holds.

Proof:   λ ‖𝑤
→

‖
2

= λ 〈𝑤
→

, 𝑤
→

〉       
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=  〈λ 𝑤
→

, 𝑤
→

〉     

 =  〈β 𝑥
→

+ α 𝑦
→

, 𝑤
→

〉        

  =  〈β 𝑥
→

+ α 𝑦
→

, 𝑥
→

+ 𝑧
→

〉       

= β ‖𝑥
→

‖
2

+  〈β 𝑥
→

, 𝑧
→

〉 + 〈α 𝑦
→

, 𝑥
→

〉 + 〈α 𝑦
→

, 𝑧
→

〉    

= β ‖𝑥
→

‖
2

+  〈λ 𝑤
→

, 𝑧
→

〉 + 〈α 𝑦
→

, 𝑥
→

〉     

= β ‖𝑥
→

‖
2

+  〈λ 𝑤
→

, 𝑧
→

〉 + 〈α 𝑦
→

, 𝑦
→

− 𝐵𝐷
→

〉     

 = β ‖𝑥
→

‖
2

+  〈λ 𝑤
→

, 𝑧
→

〉 + α ‖𝑦
→

‖
2

− 〈α 𝑦
→

, 𝐵𝐷
→

〉

= β ‖𝑥
→

‖
2

+  α ‖𝑦
→

‖
2

+ 〈λ 𝑤
→

, 𝑧
→

〉 − 〈α 𝑦
→

, 𝐵𝐷
→

〉

But, , then△𝐴𝐹𝐺 ∼ △𝐵𝐷𝐶       𝐴𝐹
𝐵𝐷

= 𝐴𝐺
𝐵𝐶

           

‖λ𝑤
→

‖ • ‖𝑧
→

‖ = ‖α 𝑦
→

‖ • ‖𝐵𝐷
→

‖

, but    λ 〈𝑤
→

,𝑧
→

〉
cos𝑐𝑜𝑠 θ = α 〈𝑦

→
,𝐷𝐵

→
〉

cos𝑐𝑜𝑠 ϕ cos 𝑐𝑜𝑠 θ = cos 𝑐𝑜𝑠 ϕ 

〈λ𝑤
→

, 𝑧
→

〉 = 〈α𝑦
→

, 𝐵𝐷
→

〉

〈λ𝑤
→

, 𝑧
→

〉 − 〈α𝑦
→

, 𝐵𝐷
→

〉 = 0.                                  

Hence, the proposition is proved, and then is an inner product space.𝑋

Ptolemy's Theorem in the Real Normed Space:

In order to translate equation (1) moving from the classic space into a real normed

space, we consider the vectors: and , such that:𝑥
→

,  𝑦
→

,  𝑧
→

,  𝑤
→

, .𝐴𝐹
→

= λ 𝑤
→

λ ∈ 𝑅*
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,𝐴𝐸
→

=  β𝑥
→

 β ∈ 𝑅*.

, see fig (5),𝐴𝐺
→

=  α𝑦
→

 α ∈ 𝑅*,

Then, equation (1) becomes as follows:

 ‖𝑤
→

‖ • ‖𝑦
→

− 𝑥
→

‖ = ‖𝑥
→

‖ • ‖𝑤
→

− 𝑦
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖ (5)

Theorem3.2: let be a real normed space. Then is an inner product space if,𝑋, ‖ • ‖( ) 𝑋 

and only if for all vectors , in , and for all , equation holds.𝑥
→

, 𝑦
→

𝑧
→

, 𝑤
→

𝑋 λ, β, α < 1 (5)

Proof. From proposition 3.1, we have

 λ ‖𝑤
→

‖
2

=  β‖𝑥
→

‖
2

+ α‖𝑦
→

‖
2

…………. (I)‖𝑤
→

‖ • ‖λ 𝑤
→

‖ =  ‖𝑥
→

‖ • ‖β 𝑥
→

‖ + ‖𝑦
→

‖ • ‖α 𝑦
→

‖

Since, , then△𝐴𝐹𝐺 ∼ △𝐵𝐷𝐶 

𝐴𝐹
𝐵𝐷

= 𝐹𝐺
𝐷𝐶

 = 𝐴𝐺
𝐵𝐶

.

            ‖λ 𝑤
→

‖

‖𝑦
→

−𝑥
→

‖
= ‖β 𝑥

→
‖

‖𝑤
→

−𝑦
→

‖
 = ‖α 𝑦

→
‖

‖ 𝑤
→

−𝑥
→

‖

…………. (II)               ‖𝑦
→

−𝑥
→

‖

‖λ 𝑤
→

‖
= ‖𝑤

→
−𝑦

→
‖

‖β 𝑥
→

‖
 = ‖ 𝑤

→
−𝑥

→
‖

‖α 𝑦
→

‖

Multiply by , we get:(𝐼) (𝐼𝐼)

‖𝑤
→

‖ • ‖λ 𝑤
→

‖ •  ‖𝑦
→

−𝑥
→

‖

‖λ 𝑤
→

‖
=  ‖𝑥

→
‖ • ‖β 𝑥

→
‖ • ‖𝑤

→
−𝑦

→
‖

‖β 𝑥
→

‖
+ ‖𝑦

→
‖ • ‖α 𝑦

→
‖ • ‖ 𝑤

→
−𝑥

→
‖

‖α 𝑦
→

‖
.

Hence, the theorem is proved, and is an inner product space.𝑋

On Sides and Diagonals of Trapezoid in an Inner Product Space:

In addition, let be a trapezoid, considering vectors for and𝐴𝐵𝐶𝐷 𝑥
→

, 𝑦
→

,  𝑤
→

,  λ > 0 𝑥
→

≠

as in fig (6), we have:𝑦
→

𝐴𝐶
→

= 𝑤
→

,  

 𝐵𝐷
→

= 𝑦
→

− 𝑥
→

,   α ∈ 𝑅*.
Then equation (2) into an inner product space becomes as follows:

  ‖𝑤
→

‖
2

+ ‖𝑦
→

− 𝑥
→

‖
2

= ‖𝑦
→

‖
2

+   ‖𝑤
→

−  𝑥
→

‖
2

+ 2‖𝑥
→

‖‖ 𝑤 
→

−  𝑦
→

‖ (6)

6



Theorem3.3: let be a real normed space. Then is an inner product space if,𝑋, ‖ • ‖( ) 𝑋

and only if for all vectors , , such that, , equation holds.𝑥
→

, 𝑦
→

𝑤
→

α > 0 (6)

Proof. By using cosine formula, and from fig. (6) We get:

   ‖𝑤
→

‖
2

= ‖𝑥
→

‖
2

+  ‖𝑤
→

−  𝑥
→

‖
2

− 2 ‖𝑥
→

‖ • ‖𝑤
→

 −  𝑥
→

‖ cos 𝑐𝑜𝑠 𝐵 (7)

‖𝑦
→

− 𝑥
→

‖
2

= ‖𝑥
→

‖
2

+ ‖𝑦
→

‖
2

− 2‖𝑥
→

‖ • ‖𝑦
→

‖ cos 𝑐𝑜𝑠 𝐴 
(8)

Then, by adding these two equations (7), (8), we have the following:

‖𝑤
→

‖
2

+ ‖𝑥
→

− 𝑦
→

‖
2

= ‖𝑦
→

‖
2

+   ‖𝑤
→

−  𝑥
→

‖
2

+ 2‖𝑥
→

‖
2

− 2 ‖𝑥
→

‖ • ‖𝑤
→

 −  𝑥
→

‖ cos 𝑐𝑜𝑠 𝐵 − 2‖𝑥
→

‖ • ‖𝑦
→

‖ cos 𝑐𝑜𝑠 𝐴 

.= ‖𝑦
→

‖
2

+   ‖𝑤
→

−  𝑥
→

‖
2

+ 2 ‖𝑥
→

‖ ‖𝑥
→

‖ − ‖𝑤
→

−  𝑥
→

‖ cos 𝑐𝑜𝑠 𝐵 − ‖𝑦
→

‖ cos 𝑐𝑜𝑠 𝐴 ( ) (9)

However, from fig. (6), we get:

‖ 𝑤 
→

−  𝑦
→

‖ =  ‖𝑥
→

‖ − ‖𝑤
→

−  𝑥
→

‖ cos 𝑐𝑜𝑠 𝐵 − ‖𝑦
→

‖ cos 𝑐𝑜𝑠 𝐴 (10)
By substituting (10) in (9), hence the proof is followed, and is an inner product space.𝑋

Isosceles trapezoid: Moreover, using the isosceles property for the trapezoid we have:

,    𝑥
→

 =  α 𝑤
→

− 𝑦
→( )  α > 0

and‖𝑌
→

+ 𝑍
→

‖
2

+ ‖𝑋
→

+ 𝑌
→

‖
2

= ‖𝑋
→

‖
2

+ ‖𝑍
→

‖
2

+ 2λ‖𝑌
→

‖
2
.

 ‖𝑦
→

‖ =  ‖𝑤
→

 − 𝑥
→

‖ .     
Then by substituting in equation (6), we get:

, Which implies to the following:  ‖ 𝑥
→

α + 𝑦
→

‖
2

+ ‖𝑦
→

− 𝑥
→

‖
2

= 2‖𝑦
→

‖
2

+ 2‖ 𝑥 
→

‖
2

α

,α2 ‖ 𝑥 
→

‖
2

− 2〈𝑥, 𝑦〉( ) + 2α 〈𝑥, 𝑦〉 − ‖ 𝑥 
→

‖
2( ) + ‖ 𝑥 

→
‖

2
= 0

Which is a quadratic equation, and by using the general formula, we get the following
solutions: see [12]
Case (1): =1, which means that the trapezoid can be inscribed in a circle and becomes aα
rectangle which attains parallelogram equality as follows:

  ‖𝑥
→

+ 𝑦
→

‖
2

+ ‖𝑥
→

− 𝑦
→

‖
2

= 2‖𝑥
→

‖
2

+ 2‖ 𝑦 
→

‖
2

Case (2): , now, we substitute the value of in equation as follows:α =  ‖ 𝑥 
→

‖
2

‖𝑥
→

‖
2
−2〈𝑥

→
,𝑦
→

〉
α (6)
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  ‖ 𝑥 
→

λ + 𝑦
→

‖
2

+ ‖𝑦
→

− 𝑥
→

‖
2

= 2‖𝑦
→

‖
2

+ 2‖𝑥
→

‖ ‖ 𝑥 
→

‖
λ

  ‖
𝑥 
→

‖𝑥
→

‖
2
−2〈𝑥

→
,𝑦
→

〉( )
‖ 𝑥 

→
‖

2 + 𝑦
→

‖

2

+ ‖𝑦
→

− 𝑥
→

‖
2

= 2‖𝑦
→

‖
2

+
2‖ 𝑥 

→
‖

2
‖𝑥

→
‖

2
−2〈𝑥

→
,𝑦
→

〉( )
‖ 𝑥 

→
‖

2

 ‖𝑥 
→

‖𝑥
→

‖
2

− 2〈𝑥
→

, 𝑦
→

〉( ) + ‖ 𝑥 
→

‖
2

• 𝑦
→

‖
2

+ ‖ 𝑥 
→

‖
4

• ‖𝑦
→

− 𝑥
→

‖
2

=

.=  2‖ 𝑥 
→

‖
4

• ‖𝑦
→

‖
2

+ 2‖𝑥
→

‖
6

− 4‖ 𝑥 
→

‖
4
〈𝑥

→
, 𝑦

→
〉

  ‖𝑥 
→

‖𝑥
→

‖
2

− 2ρ
+
' 𝑥, 𝑦( )( ) + ‖ 𝑥 

→
‖

2
• 𝑦

→
‖

2

+ ‖ 𝑥 
→

‖
4

• ‖𝑥
→

− 𝑦
→

‖
2

=

 =  2‖ 𝑥 
→

‖
4

• ‖𝑦
→

‖
2

+   2‖𝑥
→

‖
6

− 4‖ 𝑥 
→

‖
4
ρ

+
' 𝑥, 𝑦( ) (11)

Theorem3.4: Let be a real normed space. Then is an inner product space if,𝑋, ‖ • ‖( ) 𝑋

and only if for all vectors , in ,  equation holds.𝑥
→

, 𝑦
→

𝑤
→

𝑋 (11)

Proof. Substitute by with in equation we get:𝑥 𝑡𝑥 𝑡 > 0 11( ),

.  ‖‖ 𝑥 
→

‖
2

• 𝑦
→

− 2𝑥 
→

ρ
+

'
𝑥, 𝑦( )‖

2

+ ‖ 𝑥 
→

‖
4

• ‖𝑦
→

‖
2

 =  2‖ 𝑥 
→

‖
4

• ‖𝑦
→

‖
2

Then by using instead of and instead of , where and are unit vectors, then this𝑢
→

𝑥 
→

𝑣
→

𝑦
→

𝑢
→

𝑣
→

equality becomes: ,  ‖𝑣
→

− 2𝑢
→

ρ
+

'
𝑢, 𝑣( )‖

2

 =  1

Then we have: 4ρ
+
' 𝑢, 𝑣( )2 − 4ρ

+
' 𝑢, 𝑣( )∙ρ

+
' 𝑣, 𝑢( ) = 0

,ρ
+
' 𝑢, 𝑣( ) ρ

+
' 𝑢, 𝑣( ) − ρ

+
' 𝑣, 𝑢( )( ) = 0

Then we conclude that,

, orρ
+
' 𝑢, 𝑣( ) = 0 ρ

+
' 𝑢, 𝑣( ) = ρ

+
' 𝑣, 𝑢( )

Since this equality hold for , , then is an inner product space by condition (2).𝑢
→

 𝑣
→

∈ 𝑆
𝑥

𝑋 
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On Trapezoid Based on a Triangle in an Inner Product Space:

Now again we will translate equation (2) into an inner product space considering

vectors for and as in fig (7), so we have:𝑥
→

, 𝑦
→

,  α𝑥
→

,  α𝑦
→

,  α > 0 𝑥
→

≠ 𝑦
→

  𝐴𝐶
→

= 𝑦
→

− α𝑥
→

,    α > 1       

  𝐵𝐷
→

= α𝑦
→

− 𝑥
→

,   α > 1.

Then we translate equation (2) as follows: see [11]

  ‖𝑦
→

− α𝑥
→

‖
2

+ ‖α𝑦
→

− 𝑥
→

‖
2

= ‖α𝑥
→

− 𝑥
→

‖
2

+ ‖α𝑦
→

− 𝑦
→

‖
2

+ 2α‖𝑦
→

− 𝑥
→

‖
2
.               

  ‖𝑦
→

− α𝑥
→

‖
2

+ ‖α𝑦
→

− 𝑥
→

‖
2

= α − 1( )2 ‖𝑥
→

‖
2

+ ‖𝑦
→

‖
2( ) + 2α‖𝑦

→
− 𝑥

→
‖

2
.                (12)

Theorem 3.5: let be a real normed space. Then is an inner product space if,𝑋, ‖ • ‖( ) 𝑋

and only if for all vectors , , and for all, , equation holds.𝑥
→

, 𝑦
→

α𝑥
→

, α𝑦
→

α > 1 (12)

Proof.

  ‖𝑦
→

− α𝑥
→

‖
2

= α2‖𝑥
→

‖
2

+ ‖𝑦
→

‖
2

− 2α〈𝑦
→

, 𝑥
→

〉

‖α𝑦
→

− 𝑥
→

‖
2

= α2‖𝑦
→

‖
2

+ ‖𝑥
→

‖
2

− 2α〈𝑦
→

, 𝑥
→

〉

  ‖𝑦
→

− α𝑥
→

‖
2

+ ‖α𝑦
→

− 𝑥
→

‖
2

= α2‖𝑥
→

‖
2

+ ‖𝑦
→

‖
2

− 2α〈𝑦
→

, 𝑥
→

〉 + α2‖𝑦
→

‖
2

+ ‖𝑥
→

‖
2

− 2α〈𝑦
→

, 𝑥
→

〉 − 2α‖𝑦
→

− 𝑥
→

‖
2

+ 2α‖𝑦
→

= α2‖𝑥
→

‖
2

+ ‖𝑥
→

‖
2

+ α2‖𝑦
→

‖
2

+ ‖𝑦
→

‖
2

− 4α〈𝑦
→

, 𝑥
→

〉 − 2α‖𝑦
→

‖
2
 − 2α‖𝑥

→
‖

2
 + 4α〈𝑦

→
, 𝑥

→
〉  + 2α‖𝑦

→
− 𝑥

→
‖

2
    

  =

α2‖𝑥
→

‖
2

− 2α‖𝑥
→

‖
2

+ ‖𝑥
→

‖
2

+ α2‖𝑦
→

‖
2

− 2α‖𝑦
→

‖
2

+ ‖𝑦
→

‖
2

+ 2α‖𝑦
→

− 𝑥
→

‖
2
.

   = α2 − 2α + 1( )‖𝑥
→

‖
2

+ α2 − 2α + 1( )‖𝑦
→

‖
2

+ 2α‖𝑦
→

− 𝑥
→

‖
2
.

=  α2 − 2α + 1( ) ‖𝑥
→

‖
2

+ ‖𝑦
→

‖
2( ) + 2α‖𝑦

→
− 𝑥

→
‖

2
.

Reciprocally, assuming the hypothesis for unitary vectors and instead of and , i.e.:𝑢 𝑣 𝑥 𝑦
in , we have that for all in and :𝑢, 𝑣 𝑆

𝐸
𝑢, 𝑣 𝑆

𝐸
α > 0
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 ‖𝑣
→

−α𝑢
→

‖
2
−‖𝑢

→
‖

2

2α  +  ‖α𝑣
→

−𝑢
→

‖
2
−‖𝑢

→
‖

2

2α  

 =  
α−1( )2 ‖𝑢

→
‖

2
+‖𝑣

→
‖

2( )
2α + 2α‖𝑣

→
−𝑢

→
‖

2

2α −
‖𝑢

→
‖

2
+‖𝑣

→
‖

2( )
2α

ρ
+
' 𝑣, 𝑢( ) + ρ

+
' 𝑢, 𝑣( ) =

‖𝑢
→

‖
2
+‖𝑣

→
‖

2( )(α2−2α)

2α + ‖𝑣
→

− 𝑢
→

‖
2

=
α 0+
lim
→

‖𝑢
→

‖
2
+‖𝑣

→
‖

2( ) α−2( )

2 + ‖𝑣
→

− 𝑢
→

‖
2

2ρ
+
' 𝑢, 𝑣( ) = ‖𝑣

→
− 𝑢

→
‖

2
− ‖𝑢

→
‖

2
+ ‖𝑣

→
‖

2( )
ρ

+
' 𝑢, 𝑣( ) = ‖𝑣

→
−𝑢

→
‖

2
−2

2

The symmetry of for unitary vectors hold, and this is sufficient condition toρ
+
'

characterize as an inner product space.𝑋

The Height's Measurement of Trapezoid in an Inner Product Space:

If is an inner product space (I.P.S) and and are two independent vectors in𝑋 𝑥
→

𝑦
→

, in the trapezoid of vertics and , the length of the height ( ) over is𝑋 − {0} 𝐴, 𝐵, 𝐶  𝐷 ℎ 𝐴𝐵
given by:

ℎ =  2
𝐴𝐵−𝐷𝐶| |

𝑆 − 𝐷𝐶( )(𝑆 − 𝐴𝐵) 𝑆 − 𝐷𝐶 − 𝐵𝐶( ) 𝑆 − 𝐷𝐶 − 𝐴𝐷( ) (13)

Where S is the semi perimeter, , then equation can be𝑆 =  𝐴𝐵+𝐵𝐶+𝐷𝐶+𝐴𝐷
2  (13)

translated as follows:

ℎ =  2

‖𝑦
→

−𝑥
→

‖−‖𝑧
→

‖| |
𝑆 − ‖𝑧

→
‖( )(𝑆 − ‖𝑥

→
‖) 𝑆 − ‖𝑧

→
‖ − ‖𝑤

→
‖( ) 𝑆 − ‖𝑧

→
‖ − ‖𝑦

→
‖( )

(14)
Several new characterizations of inner product space have been obtained when dealing
with special properties of the function , see [13], [14].ℎ(𝑥, 𝑦)
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In the case of isosceles trapezoid, we have:

‖𝑦
→

‖ = ‖𝑤
→

‖,

,‖𝑧‖
→

= ‖𝑦
→

− 𝑥
→

‖ − 2‖
‖𝑦

→
‖

2
−ρ

+
' 𝑦,𝑥( )• 𝑦

→
−𝑥

→( )
‖𝑦

→
−𝑥

→
‖

2 ‖

,𝑆 = ‖𝑦
→

− 𝑥
→

‖ +  ‖𝑦
→

‖ − ‖
‖𝑦

→
‖

2
−ρ

+
' 𝑦,𝑥( )• 𝑦

→
−𝑥

→( )
‖𝑦

→
−𝑥

→
‖

2 ‖

So, equation translated as follows:(14)

 ℎ 𝑥, 𝑦( ) = ‖𝑦
→

‖
2

− ‖
‖𝑦

→
‖

2
−ρ

+
' 𝑦,𝑥( )• 𝑦

→
−𝑥

→( )
‖𝑦

→
−𝑥

→
‖

2 ‖

2

(15)

Theorem 3.6: : Let be a real normed space with dim ,then is an inner𝑋, ‖ • ‖( )  𝑋≥2 𝑋

product space if, and only if, equation holds, for all independent vectors , in .(15) 𝑥
→

, 𝑦
→

𝑋

Proof:

Cosider the function , see [14], defined for allℎ 𝑥, 𝑦( ) = 𝑦
→

+
‖𝑦

→
‖

2
−ρ

+
' 𝑥,𝑦( )• 𝑥

→
−𝑦

→( )
‖𝑥

→
−𝑦

→
‖

2 𝑥
→

,

, , gives the usual height over . Substitute , , in the𝑦
→

∈𝑋∙𝑋 𝑥
→

≠ 𝑦
→

‖ℎ 𝑥, 𝑦( )‖ 𝐴𝐵 𝑦 = 𝑡𝑧 𝑡 > 0
definition of , then divide both sides by and take , as follows:ℎ 𝑥, 𝑦( ) 𝑡 𝑡→0

‖ℎ 𝑥,𝑡𝑧( )‖
𝑡  = ‖𝑡𝑧 +

‖𝑡𝑧‖2−ρ
+
' 𝑥,𝑡𝑧( )• 𝑥

→
−𝑡𝑧( )

‖𝑥
→

−𝑡𝑧‖
2 ‖ /𝑡

= ‖ 𝑧 +
𝑡‖𝑧‖2−ρ

+
' 𝑥,𝑧( )• 𝑥

→
−𝑡𝑧( )

‖𝑥
→

−𝑡𝑧‖
2( )‖ 

‖ℎ 𝑥,𝑡𝑧( )‖
𝑡  = ‖𝑧 −

ρ
+
' 𝑥,𝑧( )• 𝑥

→( )
‖𝑥

→
‖

2 ‖ (16)

On the other hand by :(15)

‖ℎ 𝑥,𝑡𝑧( )‖
𝑡  = ‖𝑡𝑧‖2 − ‖

‖𝑡𝑧‖2−ρ
−
' 𝑥,𝑡𝑧( )• 𝑥

→
−𝑡𝑧( )

‖𝑥
→

−𝑡𝑧‖
2 ‖

2

 /𝑡

= ‖𝑧‖2 − ‖
𝑡‖𝑧‖2−ρ

−
' 𝑥,𝑧( )• 𝑥

→
−𝑡𝑧( )

‖𝑥
→

−𝑡𝑧‖
2
•

‖
2
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,‖ℎ 𝑥,𝑡𝑧( )‖
𝑡  = ‖𝑧‖2 −

ρ
−
' 𝑥,𝑧( )2

‖𝑥
→

‖
2 (17)

Then from and ,we get the following equality:16( ), (17)

 ‖𝑧 −
ρ

+
' 𝑥,𝑧( )• 𝑥

→( )
‖𝑥

→
‖

2 ‖ = ‖𝑧‖2 −
ρ

−
' 𝑥,𝑧( )2

‖𝑥
→

‖
2

By squaring both sides we get:

,‖𝑧 −
ρ

+
' 𝑥,𝑧( )• 𝑥

→( )
‖𝑥

→
‖

2 ‖
2

= ‖𝑧‖2 −
ρ

−
' 𝑥,𝑧( )2

‖𝑥
→

‖
2

‖ 𝑧
‖𝑧‖ − ρ

+
' 𝑥

‖𝑥‖ , 𝑧
‖𝑧‖( ) • 𝑥

‖𝑥‖ ‖
2

= ‖ 𝑧
‖𝑧‖ ‖

2
− ρ

−
' 𝑥

‖𝑥‖ , 𝑧
‖𝑧‖( )2

, (18)

Let , and , such that are two unit vectors in , then equation𝑢 = 𝑥
‖𝑥‖ 𝑣 = 𝑧

‖𝑧‖ 𝑢 ,  𝑣 𝑋 (18)

be as follows:

‖𝑣 − ρ
+
' 𝑢, 𝑣( )∙𝑢‖

2
= 1 − ρ

−
' 𝑢, 𝑣( )2, (19)

Substitute by , we obtain:𝑣 𝑢+𝑣
‖𝑢+𝑣‖

‖ 𝑢+𝑣
‖𝑢+𝑣‖ − ρ

+
' 𝑢, 𝑢+𝑣

‖𝑢+𝑣‖( )∙𝑢‖
2

= 1 − ρ
−
' 𝑢, 𝑢+𝑣

‖𝑢+𝑣‖( )2
,

‖𝑢 + 𝑣 − ρ
+
' 𝑢, 𝑢 + 𝑣( )∙𝑢‖

2
= ‖𝑢 + 𝑣‖2 − ρ

−
' 𝑢, 𝑢 + 𝑣( )2

‖𝑣 + 𝑢(1 − ρ
+
' 𝑢, 𝑢 + 𝑣( )‖

2
= ‖𝑢 + 𝑣‖2 − ρ

−
' 𝑢, 𝑢 + 𝑣( )2

‖𝑣 + 𝑢(1 − 1 − ρ
+
' 𝑢, 𝑣( ))‖

2
= ‖𝑢 + 𝑣‖2 − (1 + ρ

−
' 𝑢, 𝑣( ))

2

‖𝑣− ρ
+
' 𝑢, 𝑣( )𝑢‖

2
= ‖𝑢 + 𝑣‖2 − 1 − ρ

−
' 𝑢, 𝑣( )2 − 2ρ

−
' 𝑢, 𝑣( )

1 + ρ
+
' 𝑢, 𝑣( )2 − 2ρ

+
' 𝑢, 𝑣( )2 = ‖𝑢 + 𝑣‖2 − 1 − ρ

−
' 𝑢, 𝑣( )2 − 2ρ

−
' 𝑢, 𝑣( )

1 − ρ
+
' 𝑢, 𝑣( )2 = ‖𝑢 + 𝑣‖2 − 1 − ρ

−
' 𝑢, 𝑣( )2 − 2ρ

−
' 𝑢, 𝑣( )

1 = ‖𝑢 + 𝑣‖2 − 1 − 2ρ
−
' 𝑢, 𝑣( )

2 + 2ρ
−
' 𝑢, 𝑣( ) = ‖𝑢 + 𝑣‖2
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2 + 2ρ
+
' 𝑢, 𝑣( ) = ‖𝑣 + 𝑢‖2

2 + 2ρ
−
' 𝑢, 𝑣( ) = 2 + 2ρ

−
' 𝑣, 𝑢( )

.ρ
−
' 𝑢, 𝑣( ) = ρ

−
' 𝑣, 𝑢( )

4 – Applications of Ptolemy's theorem: Here, we have some applications of Ptolemy's
theorem on real normed spaces through some mathematical identities.

From equation (5), and when a cyclic quadrilateral being a trapezoid, this leads to the
following corollary:

Corollary 4.1: Let be a real normed space with dim, then is an inner𝑋, ‖ • ‖( )  𝑋≥2 𝑋

product space if, and only if, for all independent vectors , in such that the𝑥
→

, 𝑦
→

 𝑤
→

𝑋
following equation holds:

‖𝑥 
→

‖𝑥
→

‖
2

− 2ρ
+
' 𝑥, 𝑦( )( ) ++ 𝑦

→
• ‖𝑥

→
‖

2
‖ • ‖𝑦

→
− 𝑥

→
‖ =

 =  ‖ 𝑥 
→

‖
2

‖𝑥
→

‖
2

− 2ρ
+
' 𝑥, 𝑦( )( ) +  𝑦 

→
‖𝑥 

→
‖𝑥

→
‖

2
− 2ρ

+
' 𝑥, 𝑦( )( ) + ‖ 𝑥 

→
‖

2
𝑦
→

− 𝑥
→( )‖  (20)

First application:

Suppose that a circle contain point of parallelogram and intersects side𝐴 𝐴𝑃𝑄𝑅
and diagonals , in points , and respectively,𝐴𝑃,  𝐴𝑅 𝐴𝑄  𝐷𝐵 𝐵 𝐷 𝐶

See fig. (9). so, we have the following property: see [7]

(20)𝐴𝐶 • 𝐴𝑄 = 𝐴𝐵 • 𝐴𝑃 +  𝐴𝐷 • 𝐴𝑅

We consider the vectors , , , for all , then equation (20)𝑥
→

, 𝑦
→

𝑤
→

 β 𝑥
→

, α𝑦
→

,   λ𝑤
→

λ,  β,  α ∈ 𝑅*

becomes:

‖𝑤
→

‖ • ‖λ𝑤
→

‖ = ‖𝑥
→

‖ • ‖β 𝑥
→

‖ + ‖𝑦
→

‖ • ‖ α𝑦
→

‖

Which can be written as:

 λ ‖𝑤
→

‖
2

=  β‖𝑥
→

‖
2

+ α‖𝑦
→

‖
2

(21)
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Corollary 4.2: let be a real normed space. Then is derived from an inner𝑋, ‖ • ‖( ) ‖ • ‖ 

product space if, and only if for all vectors , in , and for all, ,𝑥
→

, 𝑦
→

𝑧
→

, 𝑤
→

𝑋 λ β, α > 1
equation holds.(21)

Proof: From Ptolemy's theorem, we have:

‖𝑤
→

‖ • ‖𝑦
→

− 𝑥
→

‖ = ‖𝑥
→

‖ • ‖𝑦
→

− 𝑤
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖

Since, , then△𝐵𝐶𝐷 ∼ △𝐴𝑄𝑃 𝐷𝐵
𝐴𝑄

= 𝐷𝐶
𝐴𝑃

 = 𝐵𝐶
𝑃𝑄

.

‖𝑦
→

−𝑥
→

‖

‖λ 𝑤
→

‖
= ‖𝑦

→
−𝑤

→
‖

‖β 𝑥
→

‖
 = ‖ 𝑤

→
−𝑥

→
‖

‖α 𝑦
→

‖

From the two steps, we have:

‖𝑤
→

‖ • ‖λ 𝑤
→

‖ • ‖𝑦
→

−𝑥
→

‖

‖λ 𝑤
→

‖
=  ‖𝑥

→
‖ • ‖β 𝑥

→
‖ • ‖𝑦

→
−𝑤

→
‖

‖β 𝑥
→

‖
+ ‖𝑦

→
‖ • ‖α 𝑦

→
‖ • ‖ 𝑤

→
−𝑥

→
‖

‖α 𝑦
→

‖

 λ ‖𝑤
→

‖
2

=  β‖𝑥
→

‖
2

+ α‖𝑦
→

‖
2

Hence, the corollary is proved.

Second Application:

a square is inscribed a circle and is a point on the arc of the circle, then we𝐴𝐵𝐶𝐷 𝑃 𝐵𝐶
^

have the following property:

.                                                                 (22)𝑃𝐴+𝑃𝐶
𝑃𝐵+𝑃𝐷

= 𝑃𝐷
𝑃𝐴

It can be translated into a real normed space by considering , as vectors as follows:𝑥
→

𝑦
→

  ‖2𝑥
→

+𝑦
→

‖+‖𝑦
→

‖

‖𝑥
→

+𝑦
→

‖+‖𝑥
→

+𝑦
→

‖
= ‖𝑥

→
+𝑦

→
‖

‖2𝑥
→

+𝑦
→

‖
.

(23)  ‖2𝑥
→

+𝑦
→

‖+‖𝑦
→

‖

2‖𝑥
→

+𝑦
→

‖
 =  ‖𝑥

→
+𝑦

→
‖

‖2𝑥
→

+𝑦
→

‖
.
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Corollary 4.3: let be a real normed space. Then is derived from an inner𝑋, ‖ • ‖( ) ‖ • ‖ 

product space if, and only if for all vectors in ,  equation holds.𝑥
→

, 𝑦
→

𝑋 (23)

Proof: from the cyclic quadrilateral and by using Ptolemy's theorem we get𝐴𝐵𝐶𝑃

‖2𝑥
→

‖ • ‖𝑥
→

+ 𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑦
→

‖ + ‖𝑥
→

‖ • ‖ 2𝑥
→

+ 𝑦
→

‖

Again, from we have:𝐴𝐵𝑃𝐷

‖2𝑥
→

‖ • ‖2𝑥
→

+ 𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑥
→

+ 𝑦
→

‖ + ‖𝑥
→

‖ • ‖ 𝑥
→

+ 𝑦
→

‖
Then by divide the first equation by the second one, we get

‖2𝑥
→

‖‖𝑥
→

+𝑦
→

‖

‖2𝑥
→

‖+‖2𝑥
→

+𝑦
→

‖
= ‖𝑥

→
‖•‖𝑦

→
‖+‖𝑥

→
‖•‖ 2𝑥

→
+𝑦

→
‖

‖𝑥
→

‖•‖ 𝑥
→

+𝑦
→

‖+‖𝑥
→

‖•‖ 𝑥
→

+𝑦
→

‖

Which implies that:
‖𝑥

→
+𝑦

→
‖

‖2𝑥
→

+𝑦
→

‖
= ‖2𝑥

→
+𝑦

→
‖+‖𝑦

→
‖

2‖𝑥
→

+𝑦
→

‖
.

Third Application (Golden Ratio):

Let be a regular pentagon in a circle, then the golden ratio is given by:𝐴𝐵𝐶𝐷𝐸 𝑟

.𝑟 =  𝑑
𝑎 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

𝑠𝑖𝑑𝑒 = 1+ 15
2

Which can be written in the normed space as:

‖𝑥
→

+𝑦
→

‖

‖𝑥
→

‖
= 1+ 15

2 . (24)

Corollary 4.4: let be a real normed space. Then is derived from an inner𝑋, ‖ • ‖( ) ‖ • ‖ 

product space if, and only if for all vectors in ,  equation holds.𝑥
→

, 𝑦
→

𝑋 (24)

Proof: by using Ptolemy's theorem in the shape , we have𝐴𝐵𝐶𝐷

‖ 𝑤
→

+ 𝑦
→

‖ • ‖𝑥
→

+ 𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑤
→

‖ + ‖𝑦
→

‖ • ‖ 𝑧
→

+ 𝑟
→
‖

From regularity, we have:

‖𝑥
→

+ 𝑦
→

‖ = ‖ 𝑧
→

+ 𝑟
→
‖ = ‖ 𝑤

→
+ 𝑦

→
‖

‖𝑥
→

‖ = ‖𝑤
→

‖ = ‖𝑦
→

‖                     

Then we have: ‖𝑥
→

+ 𝑦
→

‖
2

= ‖𝑥
→

‖
2

+ ‖𝑥
→

‖ • ‖ 𝑥
→

+ 𝑦
→

‖           

.            ‖𝑥
→

+𝑦
→

‖

‖𝑥
→

‖( )2

− ‖𝑥
→

+𝑦
→

‖

‖𝑥
→

‖
− 1 = 0

By solving this quadratic equation, we have the following solution,
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‖𝑥
→

+𝑦
→

‖

‖𝑥
→

‖
= 1+ 15

2 .

Which is golden ratio.

Fourth Application.

Ptolemy's theorem also provides some trigonometric identities; here we prove the
addition and the subtraction formula for sine and cosine rule.

Addition Formula: Let be a cyclic quadrilateral such that the side serve as a𝐴𝐵𝐶𝐷 𝐴𝐶 
diameter and , then from the fig. (12) We have:𝐴𝐶 = 1

 ‖𝑤
→

‖ = 1.

‖𝑤
→

− 𝑦
→

‖ = sin 𝑠𝑖𝑛 α.  

           ‖𝑦
→

‖ =  cos 𝑐𝑜𝑠 α.  

      𝑤
→

− 𝑥
→

= sin 𝑠𝑖𝑛 β .

            ‖𝑥
→

‖ =  cos 𝑐𝑜𝑠 β.  

In addition, from , we have:△𝐴𝐷𝐵 ‖𝑥
→

−𝑦
→

‖
sin𝑠𝑖𝑛 α+β( ) = ‖𝑦

→
‖

sin𝑠𝑖𝑛 90−α( ) .

Which implies that: sin 𝑠𝑖𝑛 α + β( ) =  ‖𝑥
→

− 𝑦
→

‖
Then by substituting in the following Ptolemy's theorem:

‖𝑤
→

‖ • ‖𝑥
→

− 𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑤
→

− 𝑦
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖

We get: sin 𝑠𝑖𝑛 α + β( ) =  sin 𝑠𝑖𝑛 α∙ cos 𝑐𝑜𝑠 β +   cos 𝑐𝑜𝑠 α∙ sin 𝑠𝑖𝑛 β 
Which called the addition formula of sine.
Subtraction Formula: Let be a cyclic quadrilateral such that the side serve as𝐴𝐵𝐶𝐷 𝐵𝐶 
a diameter and , then from the fig. (13) We have:𝐵𝐶 = 1

 ‖𝑤
→

− 𝑥
→

‖ = 1.                 

‖𝑤
→

‖ = sin 𝑠𝑖𝑛 α.  

           ‖𝑋
→

‖ =  cos 𝑐𝑜𝑠 α.          

‖𝑤
→

− 𝑦
→

‖ = sin 𝑠𝑖𝑛 β .        

‖𝑥
→

− 𝑦
→

‖ =  cos 𝑐𝑜𝑠 β.      
And from , we have:△𝐴𝐷𝐵

 ‖𝑦
→

‖
sin𝑠𝑖𝑛 α−β( ) = ‖𝑦

→
‖

sin𝑠𝑖𝑛 90−β( ) .
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Which implies that: sin 𝑠𝑖𝑛 α − β( ) =  ‖𝑦
→

‖ 

Then by substituting in the following Ptolemy's theorem:

‖𝑤
→

‖ • ‖𝑥
→

− 𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑤
→

− 𝑦
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖

We get:
sin 𝑠𝑖𝑛 α − β( ) =  sin 𝑠𝑖𝑛 α∙ cos 𝑐𝑜𝑠 β −   cos 𝑐𝑜𝑠 α∙ sin 𝑠𝑖𝑛 β .  

Which called the subtraction formula of sine.

Cosine rule: let be any arbitrary triangle. Then we have the following relation:𝐴𝐵𝐶

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐𝑐𝑜𝑠𝐴  (25)

Proof: Let be an isosceles trapezoid such that, then see fig.𝐴𝐵𝐶𝐷 (14)

‖𝑦
→

‖ =  ‖𝑤
→

 −  𝑥
→

‖     

𝐴𝐶‖ =  𝑤
→

‖ = ‖𝑥
→

 −  𝑦
→

‖ 

‖𝑦
→

 −  𝑤
→

‖ =  ‖𝑥
→

‖ − 2‖𝑤
→

 −  𝑥
→

‖ cos 𝑐𝑜𝑠 θ
1

+ θ
2( ) 

Then from Ptolemy's theorem, we have:

‖𝑤
→

‖ • ‖𝑥
→

−  𝑦
→

‖  = ‖𝑥
→

‖ • ‖𝑤
→

−  𝑦
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖

  = ‖𝑥
→

‖ ‖𝑥
→

‖ − 2‖𝑤
→

 −  𝑥
→

‖ cos 𝑐𝑜𝑠 θ
1

+ θ
2( ) ( ) + ‖𝑦

→
‖ • ‖ 𝑤

→
− 𝑥

→
‖

‖𝑤
→

‖
2
 = ‖𝑥

→
‖

2
+ ‖ 𝑤

→
− 𝑥

→
‖

2
− 2‖𝑤

→
‖‖𝑤

→
−  𝑥

→
‖ cos 𝑐𝑜𝑠 θ

1
+ θ

2( ) .

(26)

Which we called formula of cosine in the real normed space.
Corollary 4.5: let be Congruent triangle such that A, B. C, and Q on a circle, then𝐴𝐵𝐶

,𝐴𝑄 = 𝑄𝐵 + 𝑄𝐶 (27)

Which translated as: ‖𝑤
→

‖ =  ‖𝑤
→

 −  𝑥
→

‖ + ‖𝑤
→

− 𝑦
→

‖ (28)
Proof: Then from Ptolemy's theorem, we have:

‖𝑤
→

‖ • ‖𝑥 −  𝑦
→

‖ = ‖𝑥
→

‖ • ‖𝑤
→

−  𝑦
→

‖ + ‖𝑦
→

‖ • ‖ 𝑤
→

− 𝑥
→

‖
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But: ‖𝑦
→

‖ =  ‖𝑥 −  𝑦
→

‖ = ‖𝑥
→

‖

   ‖𝑤
→

‖•‖𝑥− 𝑦
→

‖

‖𝑥− 𝑦
→

‖
=  ‖𝑥

→
‖•‖𝑤

→
− 𝑦

→
‖

‖𝑥
→

‖
=  ‖𝑦

→
‖•‖ 𝑤

→
−𝑥

→
‖

 ‖𝑦
→

‖

   ‖𝑤
→

‖ =  ‖𝑤
→

 −  𝑥
→

‖ + ‖𝑤
→

− 𝑦
→

‖
Hence, the corollary proved.
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