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Abstract:

The aim of this paper is to investigate the performance of some parametric Bayesian

estimators of the survivor function with respect to bias and efficiency when data contain

censoring. The study is primarily based on Mote Carlo experiments. The methods used were:

the likelihood method, Bayesian with exponential prior and Bayesian with gamma prior. It is

shown that the Bayesian method with gamma prior has the best performance.

Keywords: Bayesian method, parametric, Monte Carlo methods, survivor function, censoring,

Likelihood.
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The survivor function, denoted by is the probability that an individual survives at least𝑆(𝑡)

up to time . If is a random variable representing the survival time of an individual, then𝑡 𝑇 𝑆(𝑡)

is defined formally as:

𝑆(𝑡) = 𝑃𝑟𝑜𝑏(𝑇 > 𝑡)

Several parametric and nonparametric estimation methods are suggested in the literature

for the estimation of . In this paper our discussion will cover Bayesian and non-Bayesian  𝑆(𝑡)

methods. These will be considered in case of censored data. Analysis of survival data when

survival times follow a known distribution is also extensively investigated through Bayesian and

non – Bayesian approaches. Sinha (1986) determined the Bayes estimates of the reliability

function and the hazard rate of the Weibull failure time distribution by employing squared error

loss function. Abdel-Wahid and Winterbottom (1987) studied the approximate Bayesian

estimates for the Weibull reliability function and hazard rate from censored data by employing a

new method that has the potential of reducing the number of terms in Lindley procedure.

Omari and Ibrahim (2011) conducted a study on Bayesian survival estimator for Weibull

distribution with censored data using squared error loss function with Jeffreys prior amongst

others. Noortwijkl and Gelder (2000) applied Bayesian estimation of quantiles for the purpose

of flood prevention assuming sea water levels exponentially distribution with unknown value of

the mean. Linear loss, squared-error loss, and modified linex loss are three types of loss

functions are considered.

Guure, and Ibrahim (2012) compared the classical maximum likelihood against the

Bayesian estimators using an informative prior and a proposed data-dependent prior known as

generalized non informative prior. The Bayesian estimation was considered under three loss

functions. A simulation was conducted under different sample sizes and the mean squared

error, absolute bias are used for comparison. Sulistianingsih et al. (2017) used Bayesian

estimation method under Linex Loss function for Survival model followed an exponential

distribution and they considered Gamma distribution as prior and likelihood function produces
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a gamma distribution as posterior distribution. Calabria and Pulcini (1996) derived Bayes

estimates of the parameters and functions thereof in the left-truncated exponential

distribution. Both the non-informative prior and an informative prior on the reliability level at a

prefixed time value are considered. The statistical performance of the Bayes estimates is

compared to those of the maximum likelihood ones through the risk function. Palacio and

Leisen (2018) focus for estimating multivariate survival functions. Their model extends the work

of Epifani and Lijoi (2010) to an arbitrary dimension and allows to model the dependence

among survival times of different groups of observations. Theoretical results about the posterior

behavior of the underlying dependent vector of completely random measures are provided. The

performance of the model is tested on a simulated dataset arising from a distributional Clayton

copula. Guure et al. (2012) applied Bayesian estimation, for the two-parameter Weibull

distribution using extension of Jeffreys’ prior information with three loss functions, and

Syuan-Rong and Shuo-Jye (2011) considered Bayesian estimation and prediction for Weibull

model with progressive censoring.

The paper aimed to find the best estimator of survival function. Maximum likelihood method,

Bayesian method with exponential as prior distribution and Bayesian method with gamma as

prior distribution are used for estimation. The comparison between these estimation methods

is done through a Monte-Carlo Simulation with different sample sizes.

2. Methods of estimation for censored data:

Suppose the survivor data, in sample of size , is such that times are𝑛 𝑡
1
 ,  𝑡

2
 , …,  𝑡

𝑟

uncensored and time are censored𝑡*
1
 ,  𝑡*

2
 , …,  𝑡*

𝑛−𝑟

The likelihood function is:

𝐿 λ( ) =
𝑖=1

𝑟

∏ 𝑓(𝑡
𝑖
) 

𝑖=1

𝑛−𝑟

∏ 𝑠(𝑡*
𝑖
)
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Letting

δ
𝑖

= {0   𝑖𝑓   𝑡
𝑖
  𝑖𝑠 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑        1  𝑖𝑓  𝑛𝑜𝑡                              

we may write the likelihood function as

𝑖=1

𝑟

∏ {𝑓(𝑡
𝑖
)}

δ
𝑖 𝑆(𝑡*

𝑖
){ }1−δ

𝑖

If

𝑓 𝑡( ) = λ𝑒−λ𝑡

We know that

𝑆 𝑡( ) = 𝑒−λ𝑡

In this case the likelihood function becomes

𝐿 λ( ) =
𝑖=1

𝑟

∏ λ𝑒
−λ𝑡

𝑖⎡⎣ ⎤⎦
δ

𝑖
𝑒

−λ𝑡
𝑖⎡⎣ ⎤⎦

1−δ
𝑖

=
𝑖=1

𝑟

∏ λ
δ

𝑖𝑒
−λ𝑡

𝑖             (1)

2.1 Likelihood Estimator:

To obtain the maximum likelihood estimator of we first estimate . Taking logs of𝑆(𝑡)  λ

both sides of (5.8) we get:

𝐿 λ( ) =
𝑖

𝑟

∑ δ
𝑖
𝑙𝑜𝑔λ − λ

𝑖

𝑟

∑ 𝑡
𝑖

= 𝑟𝑙𝑜𝑔λ − λ
𝑖

𝑟

∑ 𝑡
𝑖
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since only of the are nonzero.𝑟 δ

Taking partial derivatives with respect to and equating to zero we get as a maximumλ

likelihood estimator of λ

λ
^

4
= 𝑟

𝑖=1

𝑟

∑ 𝑡
𝑖

                                         (2)

so that

𝑆
^

4
𝑡( ) = 𝑒𝑥𝑝 −  𝑟

𝑖=1

𝑟

∑ 𝑡
𝑖

 𝑡
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⁡              (3)

is the maximum likelihood estimator of the survivor function when the data is censored.

2.2 Bayesian Estimator with Exponential Prior:

If the parameter of the exponential distribution is assumed we see that the posterior λ 𝐸𝑥𝑝(λ')

distribution of is proportional to the product of the likelihood function and the prior i.e.λ

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟∝λ𝑟𝑒
−λ

𝑖=1

𝑛

∑ 𝑡
𝑖
λ'𝑒−λλ'

∝ λ𝑟𝑒
−λ(λ'+

𝑖=1

𝑛

∑ 𝑡
𝑖
)

This is which has a mean𝑔𝑎𝑚𝑚𝑎(𝑟 + 1, λ' +
𝑖=1

𝑛

∑ 𝑡
𝑖
)

λ
4

= 𝑟+1

λ'+
𝑖=1

𝑟

∑ 𝑡
𝑖

         (4)
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λ
^
' = 𝑚

𝑖

𝑛

∑µ
^

𝑖

substituted this we get as the Bayesian estimator of λ

λ
^

5
= 𝑟+1

𝑖=1

𝑛

∑ 𝑡
𝑖
+ 𝑚

𝑖

𝑛

∑µ
^

𝑖

           5( )

so that

𝑆
^

5
𝑡( ) = 𝑒𝑥𝑝              (6) 

is the estimator in this case.

2.3 Bayesian estimator with gamma prior:

If in is assumed to be we can see that the posterior distributionλ 𝐸𝑥𝑝(λ) 𝑔𝑎𝑚𝑚𝑎 (α, β)

of is . The estimates and of section (2) will serve as momentλ  𝑔𝑎𝑚𝑚𝑎 (𝑟 + α, β +
𝑖

𝑛

∑ 𝑡
𝑖
) α

^
β
^

estimates . Hence the Bayesian estimator of is:   α 𝑎𝑛𝑑 β λ

λ
^

6
= 𝑟+α

^

β
^

+
𝑖=1

𝑛

∑ 𝑡
𝑖

7( )

and

𝑆
^

6
𝑡( ) = 𝑒𝑥𝑝 −  𝑟+α

^

β
^

+
𝑖=1

𝑛

∑ 𝑡
𝑖

 𝑡
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

       (8)⁡ 

is the estimator of the survivors function.

3. Simulation Experiments:
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To examine the performance of the models presented in this study, we carry out a number of

Monte Carlo experiments.

1- Generate a population of survival times, part of it censored; from an exponential

distribution with know .𝐸𝑥𝑝(λ) λ

3.1 Experiment (I): Likelihood estimation:

1. Take a sample of size and let the number of uncensored times in the sample be𝑛 𝑟

and the censored .  Denoted this sample by . (𝑛 − 𝑟)  𝑖

2. Calculate using (2) and denoted byλ
^

4
λ
^

4𝑖

3. Calculate using (3) and denoted it by𝑆
^

4
(𝑡) 𝑆

^

4𝑖
(𝑡)

4. Calculate the residuals

𝑟
𝑖𝑗

= 𝑠
^

4𝑖
𝑡

𝑗( ) − 𝑠
𝑖

𝑡
𝑗( )    ,    𝑗 = 1, …, 𝑛

where is the value of the estimate of the survivor function (using (2)) at the𝑠
^

4𝑖
𝑡

𝑗( ) 𝑗

the survival time in sample and is the value of the true survival function (for𝑖 𝑠
𝑖

𝑡
𝑗( )

the censored data)  at survival time j in sample .𝑖

5. Calculate the mean square error for sample 𝑖

𝑀𝑆𝐸
4𝑖

= 𝑗

𝑛

∑𝑟
𝑖𝑗

2

𝑛

6. Repeats steps 1-5 (very large).𝑓𝑜𝑟 𝑖 = 1, …, 𝑁

7. Calculate the average mean error for 𝑠
^

4
𝑡( )

𝑀𝑆𝐸
4

= 𝑗

𝑁

∑𝑀𝑆𝐸
4𝑖

𝑁
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and the variance

𝑉
4

= 𝑖

𝑁

∑(𝑀𝑆𝐸
4𝑖

−𝑀𝑆𝐸
4
)2

𝑁

3.2 Experiment (II): Bayesian Estimation with exponential prior:

1. Select m samples each of size and calculates their means .𝑛   µ
^

1
, µ

^

2
, …, µ

^

𝑚

2. Calculate

µ
^

 
= 𝑖

𝑛

∑µ
^

𝑖

𝑚

3. Take a sample of size and obtain𝑛

λ
^

5𝑖
= 𝑟+1

𝑗=1

𝑛

∑ 𝑡
𝑗
+ 𝑚

𝑗

𝑛

∑µ
^

𝑗

    ,        𝑗 = 1, …, 𝑚

where the in refers to the order of the sample𝑖 λ
^

5𝑖

4. Calculate using (5) and denoted by𝑆
^

5
(𝑡) 𝑆

^

5𝑖
(𝑡)

5. Calculate the residual

𝑟
𝑖𝑗

= 𝑆
^

5𝑖
𝑡

𝑗( ) − 𝑆
𝑖

𝑡
𝑗( )    ,    𝑗 = 1, …, 𝑛

where is the value of the estimate of the survivor function (using (6)) at𝑠
^

5𝑖
𝑡

𝑗( )
the the survival time in sample and is the value of the true survival𝑗 𝑖 𝑆

𝑖
𝑡

𝑗( )
function (for the censored data) at survival time in sample𝑗  𝑖

6. Calculate the mean square error for sample 𝑖

𝑀𝑆𝐸
6𝑖

= 𝑗

𝑛

∑𝑟
𝑖𝑗

2

𝑛
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7. Repeats steps (very large).1 − 5 𝑓𝑜𝑟 𝑖 = 1, …, 𝑁

8. Calculate the average mean error for 𝑆
^

1
𝑡( )

𝑀𝑆𝐸
5

= 𝑗

𝑁

∑𝑀𝑆𝐸
5𝑖

𝑁

and the variance

𝑉
5

= 𝑖

𝑁

∑(𝑀𝑆𝐸
5𝑖

−𝑀𝑆𝐸
5
)2

𝑁

3.3 Experiment (III): Bayesian Estimation with gamma prior:

1. Take m samples each of size and calculate their means .𝑛   1

µ
^

1

, 1

µ
^

2

, …, 1

µ
^

𝑚

2. Calculate

µ
^

 
= 𝑖

𝑛

∑ 1

µ
^

𝑖

𝑚

and

σ
^ 2

= 𝑖

𝑛

∑ 1

µ
^

𝑖

−µ
^

 
)2 

𝑚

3. Obtain the moment estimators of respectively in section (2).α
^

 𝑎𝑛𝑑 β
^

α 𝑎𝑛𝑑 β

4. Take a sample of size and obtain𝑛

λ
^

6𝑖
= 𝑛+α

^

𝑗=1

𝑛

∑ 𝑡
𝑗
+β

^
    ,        𝑗 = 1, …, 𝑛

where the in refers to the order of the sample𝑖 λ
^

3𝑖

5. Calculate using (7)  and denoted by𝑆
^

6𝑖
(𝑡) 𝑆

^

6𝑖
(𝑡)

6. Calculate the residuals
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𝑟
𝑖𝑗

= 𝑆
^

6𝑖
𝑡

𝑗( ) − 𝑆
𝑖

𝑡
𝑗( )    ,    𝑗 = 1, …, 𝑛

where is the value of the estimate of the survivor function (using (8)) at𝑆
^

3𝑖
𝑡

𝑗( )
the the survival time in sample and is the value of the true survival𝑗 𝑖 𝑆

𝑖
𝑡

𝑗( )
function (for the censored data) at survival time in sample𝑗 𝑖 

7. Calculate the mean square error for sample 𝑖

𝑀𝑆𝐸
6𝑖

= 𝑗

𝑛

∑𝑟
𝑖𝑗

2

𝑛

8. Repeats steps 1-7 (very large).𝑓𝑜𝑟 𝑖 = 1, …, 𝑁

9. Calculate the average mean error for 𝑆
^

6
𝑡( )

𝑀𝑆𝐸
6

= 𝑗

𝑁

∑𝑀𝑆𝐸
6𝑖

𝑁

and the variance

𝑉
6

= 𝑖

𝑁

∑(𝑀𝑆𝐸
6𝑖

−𝑀𝑆𝐸
6
)2

𝑁

4. Result Monte - Carlo simulation and Discussion:

This section compares, through a simulation experiment the performance of likelihood

estimators and Bayesian estimators in censored data. Maximum likelihood estimators are

considered for under the exponential distribution for both types of data. On the other hand the

Bayesian estimators are investigated for both Gamma prior and Exponential prior.

Discussion is focused on performance of the methods with respect to bias and efficiency

under various sample size.
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For all cases an exponentially distributed population of size 10000 is simulated contains 10%

censer. Sample sizes 10,30,50,75 and 100 are selected, with 1000 repetitions for each. For

stability purposes 10 iteration are performed.

Table (1), Table (2) and Table (3) show estimators of the population parameter as well as

the mean square and bias of the estimates of the survival function using likelihood and Bayesian

methods with exponential prior and gamma prior respectively when the population contain

censoring. Based on practical experience data is generated that contains 10% survival times.

4.1 Likelihood Estimation:

Table (1) gives the estimate of exponential parameter (the true of which is 55), the mean

of the estimate, as well as the bias for various sample size. The table also gives the bias in the

estimates of the survivor function and their mean squares and variance.

Table (1): Bias in the estimates of the exponential parameter and survivor function together

with the MSE of the survivor function using maximum likelihood method:

N λ
^ 𝑀𝑒𝑎𝑛 1

λ
^

Bias Bias_st MSE VAR

10 0.016167 61.86401 -6.86401 0.073044 0.01211 0.00027
30 0.01491 67.13832 -12.1383 0.096797 0.006739 6.05E-05
50 0.014748 67.85796 -12.858 0.064518 0.0055 3.1E-05
75 0.014567 68.69542 -13.6954 0.05717 0.005053 1.83E-05
100 0.014616 68.49616 -13.4962 0.049119 0.004643 1.35E-05

Source: Authors Prepared, 2021

Unlike the case in uncensored data we see from the Table (1) that the bias in the estimates of

the parameters increases slightly in general for larger sample size. However bias and mean

square of the survivor function appears to be constant with increase in sample size.
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Figure (1) and Figure (2) confirms this result for the exponential and the survivor function.

Source: Authors Prepared, 2021

Fig (1)
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Source: Authors Prepared, 2021

Fig (2)

4.2 Bayesian Estimation with Exponential   Distribution Prior:

Table (2) gives the estimate of exponential parameter (the true of which is 55) , the mean

of the estimate , as well as the bias for various sample size . The table also gives the bias in the

estimates of the survivor function and their mean squares and variance.

Table (2): Bias in the estimates of the exponential parameter and survivor function together

with the MSE of the survivor function using Bayesian estimation method:

N λ
^ 𝑀𝑒𝑎𝑛 1

λ
^

Bias Bias_st MSE VAR

10 0.018104 55.33814 -0.33814 0.111241 0.009136 0.00016
30 0.015712 63.77874 -8.77874 0.054745 0.004969 3.47E-05
50 0.015501 64.57379 -9.57379 0.042111 0.004047 2.3E-05
75 0.015564 64.49244 -9.49244 0.034773 0.003312 1.17E-05

100 0.01471 68.07073 -13.0707 0.062029 0.00441 1.28E-05
Source: Authors Prepared, 2021

13



It is obvious from Table (2) that the bias in the estimates of the parameters increases with

increase in sample size (Fig (3)).

As for the survivor function, we see that its bias decrease with increase in sample size with the

exception of sample size 100.

The same applies to the mean square (MSE) and variance (VAR) meaning that the efficiency

of the estimate increases with sample size.

Source: Authors Prepared, 2021

Fig (3)
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Source: Authors Prepared, 2021
Fig (4)

4.3 Bayesian Estimation with Gamma Distribution Prior:

Table (3) gives the estimate of exponential parameter (the true of which is 55), the mean

of the estimate, as well as the bias for various sample size. The Table (3) also gives the bias in

the estimates of the survivor function and their mean squares and variance.

Table (3): Bias in the estimates of the exponential parameter and survivor function together

with the MSE of the survivor function using Bayesian estimation method:

N λ
^ 𝑀𝑒𝑎𝑛 1

λ
^

Bias Bias_st MSE VAR

10 0.017494 57.33554 -2.33554 0.035228 0.003371 2.72E-05
30 0.016992 58.91652 -3.91652 0.032418 0.001188 2.95E-06
50 0.016618 60.22775 -5.22775 0.023866 0.001102 1.75E-06
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75 0.0166 60.28875 -5.28875 0.02479 0.000957 9.67E-07
100 0.016581 60.35823 -5.35823 0.02006 0.00093 8.24E-07
Source: Authors Prepared, 2021

Table (3) shows that the bias in the estimates of the parameters increases in sample size Fig (5)

where that of survivor function decreases. The same applies to the mean square (MSE) and

variance (VAR) meaning that the efficiency of the estimate increases with sample size.

Source: Authors Prepared, 2021

Fig (6)
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Source: Authors Prepared, 2021

Fig (7)

4.5 All method of estimation:

Table (4) below shows bias and MSE of estimates of the survivor function using LES, BEP

and BGP method. It is obvious from Table (4) that the bias in the estimates of the parameters

increases with increase in sample size. As for the survivor function, we see that its bias decrease

with increase in sample size. The mean square (MSE) meaning that the efficiency of the

estimate increases with sample size.

Table (4): Bias in the estimates of the exponential parameter and survivor function together

with the MSE of the survivor function using LES, BEP and BGP method:

Sample Size Bias MSE
LES BEP BGP LES BEP BGP

10 0.073044 0.111241 0.035228 0.01211 0.009136 0.003371
30 0.096797 0.054745 0.032418 0.006739 0.004969 0.001188
50 0.064518 0.042111 0.023866 0.0055 0.004047 0.001102
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75 0.05717 0.034773 0.02479 0.005053 0.003312 0.000957
100 0.049119 0.062029 0.02006 0.004643 0.00441 0.00093
Source: Authors Prepared, 2021

Conclusions:

We conclude in this study by observing that unlike the case in uncensored data, the bias of

the estimates of the parameters by all three methods increases with the sample size when

survival data is censored.

the bias of the estimates of the survivor function decreases with sample size while its efficiency

increases. This so is for all three methods. When the three methods are compared with respect

to bias of parameter, we see that the worst performance is that of the likelihood method which

gives relatively very large bias.

The Bayesian estimator with gamma prior provided less bias than the Bayesian estimator with

exponential bias. As for the survivor function we see that the Bayesian method with gamma

prior gave the best performance with respect to both bias and efficiency followed by Bayesian

estimator with exponential prior.
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