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Abstract: 

 This paper aimed at investigating the partial Malliavin calculus, The operators       and    associated with 

the projection on  , The existence of  A conditional density. 
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 INTRODUCTION.I 

     Let   be a real separable Hilbert space. Suppose that                  is a Gaussian process with zero 

mean and covariance function given by  (        )  〈   〉  defined in some probability space          

This means that    can be considered as an element of             

We introduce the operator    defined on H-valued smooth functionals    (             )  as follows 

                                                   (             )     

       ∑(   )(             )

 

   

 〈    〉                                                                                     

Notice that      is a real valued random variable. 

We recall the following basic properties of these operators: 

(i) The chain rule: If                   
   and        is a    function with bounded partial 

derivatives then 

      ∑           

 

   

                                                               

 

(ii) The integration by parts formula: If   and   are smooth random variables taking values in   and  , 

respectively, then: 

  〈    〉                                                                                  

This means that   is the dual of  . If we denote by               the domain of the operator   considered 

as the dual of the unbounded operator   on       (with domain     ), then formula (2.19)[56] holds for any 

       and          

(iii)       , for any   in the domain of   as an operator on        

Definition (1): We define the partial derivative operator                 as the projection of   on  , 

namely, for any        , 

    ∏     
 

 ∏     
    

     

Some properties of this derivative: 

(i)         (             )                              

   ∑     (             )  
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    ∑     (             )∏   
 

 

   

  

Note that for any     we have 

〈     〉  〈   ∏  
 

〉  
 

  
|
   

 .   ∏    
    

/  

(ii) The chain rule. Let              and let        be a continuously differentiable function with 

bounded first derivatives. Then            and 

       ∑            

 

   

  

In fact, it suffices to project on      the ordinary chain rule for the derivative operator. 

It is well known that   is a closed operator on     . 

Definition (2):  Set 

      {                }  {                }  

and for any         we define 

                

Properties of the operator     

(i) It follows from property (ii) of    that 

              ∏ (∑           

 

   

)
 

 

                                       (∑            

 

   

) 

 ∑            

 

   

 ∑ (     )   

 

     

〈         〉  

Provided that the components of             belong to         is a smooth bounded function with 

bounded first and second partial derivatives, and   ‖   ‖
              

(ii) Under the condition of Lemma (2.2.2) [56], smooth functionals of the form    (             ) 

belong to      , and therefore,       is dense in      . 

2. PRELIMINARIES 

    We derive two results regarding the existence of conditional densities. These results hold under relatively 

weak assumptions on the Malliavin derivatives but are restricted in other directions. For the first result the 
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conditioning  -field is restricted to be finitely smoothly generated. For the second result the last restriction is 

dropped, however it is assumed that the random variable for which the conditional density is obtained is one-

dimensional (and not a finite dimensional vector). Both results are motivated by the work of Bouleau-Hirsch 

[66]. We consider stronger assumption on the partial Malliavin matrix. Also, conditions for the smoothness of 

the density will be considered. 

We assume that   is a real separable Hilbert space and              is a Gaussian process. 

Theorem (1): Let         be elements of      satisfying     〈       〉          Set               

with       〈              〉    Let                    and assume that 

    〈         〉                 

Then, there exists a conditional density for the law of   given the  -field             

Proof: Consider the augmented vector 

                   

Note that in order to prove the theorem it suffices to show that the augmented vector possesses a joint density. 

The determinant of the Malliavin matrix of the augmented vector is given by: 

     0
〈       〉 〈       〉

〈       〉
 〈       〉

1                                                          

The result of Bouleau and Hirsch is that if the above determinant is a.s. non zero then the augmented vector has 

a probability density. 

On the other hand, it was shown by lkeda, Shigekawa and Taniguchi (equation 3.29 of [57]) that 

     [〈       〉]     [〈          〉]                                           

where Q is as defined by (2.30)[56]. By our assumption this expression is positive and this completes the proof. 

Theorem (2):  Let       be a real valued random variable, and                    . Assume that    

is a closed operator where   is induced by   , that means,               and       〈         

 〉  (cf. Lemma (2.2.2)) [56]. If  〈       〉         , then   has a conditional density with respect to the 

sub-  -field generated by  . 

Proof:  Without any loss of generality we may assume that   is bounded, namely | |   . Denote by    the 

probability law induced by   on   . Then it suffices to show that the probability law induced by the vector 

(    ) on          , denoted by  (    ), is absolutely continuous with respect to the product measure 

      ( )  In that case the Radon-Nikodym derivative 

 (    )  
  (    )(   )

      ( )
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will provide a version for the conditional density of   given    . 

We have, therefore, to show that for any measurable function             [   ] such that 

∫  (   )      ( )    we have  [ (    )]   . If g is such a function we have 

∫ (   )                                                                                                    

for almost all   with respect to the low of   . Consequently, there exists a sequence of continuously 

differentiable functions with bounded derivatives              [   ] such that               

converges to  (   ) for almost all (   ) with respect to the measure   (    )(   )        ( )  Take 

              ∫                

 

  

 

and 

 (   )  ∫  (   )  

 

  

   

Then                    and 

 [             ]                  ∑
   

   

              

 

   

                                  

We have 

               (    ) 

            , and in       by dominated convergence. Because of (   ) with  (   ) nonnegative, it holds 

that  (    )         Now from ( ) 

   [             ]                                                                                                

which converges a.s. to  (    )     Thus  (    )      because    was assumed to be a closed 

operator, and, therefore,  (    )           because 〈       〉         , which completes the proof of the 

theorem. 

Proposition (1): Suppose that           and           generate the same  -field   , and            for 

any    . Assume that the families     〈        〉   and     〈        〉   are such that    
 and 

   
 are closed   operators. Then        

Proof: It suffices to show that    〈        〉 for any  -measurable       . There exists a sequence 

              as    , in       and a.s. We may assume that the functions    are in   
     . Clearly 

   
[           ]   , since the projection is on the orthogonal to 〈        〉  So    

    a.s., because 

   
 is closed, and this implies that      

 
 〈        〉  

Throughout this section we assume that              is countably smoothly generated and       
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Proposition (2): 

(a) Conditional integration by parts formula: For any        and         , we  have 

 

  〈     〉|         |   
 

(b)    is ''conditionally self-adjoint'': For any F, Q in the domain of   ,  

 

      |         |    

Proof:  Let        be a   -function bounded and with bounded derivatives. Set             . Then 

by (    ) [56] 

           〈        〉  

   〈      〉  〈      〉  

    〈     〉   

which proves the first part. The second part follows since 

      |           |   

   〈       〉|         |    

 

3.  CLAIMS 

Definition (3): Set                   ∏            and for any         , set      ∏     

With this definition we have the following integration by parts formula: 

         (  ∏  
 

) 

  (〈   ∏  
 

〉) 

  〈     〉                                                                                              

for any          and         

Notice that the condition in Lemma (2.2.2) [56] implies that the H-valued smooth random variables belong to 

         So,        is a dense subset of          

Some properties of the operator   : 

(i)  Let           then it is clear from the definition that ∏            and   ∏     ∏         
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(ii) Let         , and         Then           and 

            〈     〉                                                  

Provided that the right hand side is square integrable. 

The proof is a direct consequence of the same result without  (see [65]). 

Lemma (1): If  ∏          for all    , then    is a closed operator on     . 

Proof:  For any       , we can write using integration by parts 

  〈     〉   (〈∏  
 

   〉)   ( (∏  
 

)  )  

More generally, for any smooth H-valued random variable       like 

  ∑        
 
    , we have ∏          (since ∏     were assumed to be in        and the    are 

smooth), and 

  〈     〉   (〈∏  
 

   〉)    ( (∏  
 

)  )                                                           

This implies that    is closed since 

   
     
→                          

     
       
→                           

}       

In fact, setting      in (   ) and letting     yields the result. 

Theorem (3):  Let             be a k-dimensional random vector verifying the following condition: 

(i)                          and 〈         〉       for any             

(ii)   The partial Malliavin matrix   
  

 〈         〉 is invertible a.s. 

Then there exists a conditional density for the law of   given the  -algebra  . 

Proof:  For any integer     we consider a function      
         (  and with compact support) such 

that 

(a)             if        

             (b)              if          where 

   ,        |   |                     |    |  
 

 
-         is a compact subset o 

f              
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We fix a function     
       Using the differentiation rules of the partial Malliavin calculus we deduce 

          and 

       ∑            

 

   

  

Hence, 

〈           〉  ∑          
  

 

   

  

where   
  

 is as defined above in the statement of the theorem. Then, we have 

 [              | ]  ∑ [      〈           〉   
     | ]

 

   

 

 ∑ *〈  (       
           )      〉      〈  (   

           )      〉 | +

 

   

 

  {    ∑*   
                 〈  (   

           )      〉+ | 

 

   

} 

                                                       |     

where    is some integrable random variable. 

Assume that             is rando m vector such that      for any        . 

Let              be a countably smoothly generated  - algebra such that the following condition holds: 

                       ∏            

This condition holds, for example, if the number of generators is finite, say          (   〈       〉)
  

 

          and                  

Consider the partial Malliavin matrix of  , defined as before by 

  
  

 〈         〉  

Proposition (3):  Let   be a positive integer. If    
         for some      and if we take     satisfying  

 

 
 

  

 
   , then the mapping 
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is continuous with respect to the norm ‖   ‖    on      , and the norm ‖   ‖         
 on    , for almost all  , 

where  
 

   
 

 

 
   . 

Proof: For         and           ‖ ‖      , we have, using Lemma (10), 

|∫                  

 

 

|  |∫     | |         | |                           

 

 

| 

 |∫    | |                               

 

 

| 

 ‖   | |        ‖   |      |  |    

 ‖ ‖     |      |  |     

for almost all  . 

Taking countable and dense subsets of       and         we may assume that the above inequality holds for all 

  and  , a.s., and this concludes the proof. 
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